In this paper, an optimization procedure is presented by response surface method to optimize the temperature and velocity of drying air and thickness of the moist object inside the dryer. The optimization procedure is performed to determine the minimum drying time and energy consumption as responses. A two-dimensional (2D) numerical solution is accomplished to analyze coupled heat and mass transfer occurring during drying of an apple slice. The air flow and the moist object are solved conjugate, while the heat and mass transfer equations are solved coupled together using lattice Boltzmann method (LBM). Beside this, a sensitivity analysis is executed to calculate the sensitivity of the responses (drying time and energy consumption) to the control factors. Results reveal that the real optimized parameters for the minimum drying time and energy consumption are temperature (T = 80 °C), velocity (V = 0.10404 m/s), and thickness ratio (TR = 0.1). The results of numerical solution are compared to the experimental results, presenting a reasonable agreement. This analysis could be useful in food drying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.