Using the density functional theory, the possible non-covalent interactions and six mechanisms of covalent functionalization of the drug penicillamine with functionalized carbon nanotubes (CNT) were investigated. Quantum molecular descriptors of the non-covalent configurations were studied. It was determined that binding of the drug penicillamine with functionalized CNT is thermodynamically viable. COOH functionalized CNT (NTCOOH) has more binding energy than COCl functionalized CNT (NTCOCl) and could act as a favorable system for penicillamine drug delivery within biological and chemical systems (non-covalent). NTCOOH and NTCOCl can bond to the NH 2 , OH and SH groups of penicillamine through OH (COOH mechanism) and Cl (COCl mechanism) groups, respectively. The activation energies, activation enthalpies and activation Gibbs energies of six pathways were calculated and compared with each other. The activation parameters related to the COOH mechanism are higher than those related to the COCl mechanism and therefore, the COCl mechanism is suitable for covalent functionalization. These results could be generalized to other similar drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.