A cooling tower assisted vapor compression refrigeration machine has been considered for optimization with multiple criteria. Two objective functions including the total exergy destruction of the system (as a thermodynamic criterion) and the total product cost of the system (as an economic criterion), have been considered simultaneously. A thermodynamic model based on the energy and exergy analyses and an economic model according to the Total Revenue Requirement (TRR) method have been presented. Three optimized systems including a single-objective thermodynamic optimized, a single-objective economic optimized and a multi-objective optimized are obtained. In the case of multi-objective optimization, an example of decision-making process for selection of the final solution from the Pareto frontier has been presented. The exergetic and economic results obtained for three optimized systems have been compared and discussed. The results have shown that the multi-objective design more acceptably satisfies generalized engineering criteria than other two single-objective optimized designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.