In this paper, identification of sensitive variables is attempted for second-order (flat/partially flat) and fourth-order partially flat converters with dynamic loads. The sensitivity nature of each state variable to the output speed variable of the DC motor for the above-mentioned systems was analyzed via the frequency domain technique. Further, in continuation of this, we aimed to confirm that the variables that are used in the control law exact tracking error dynamics, passive output feedback control (ETEDPOF) are sensitive. To verify the sensitivity property, an experimental case study was done using ETEDPOF and compared with the proportional-integral controller (PIC) for a flat system, and the results are presented.
Pull-in voltage Evaluation is significant for the design of electrostatically actuated MEMS devices. In this work simple closed form models are derived for computation of pull-in voltage of cantilever beams. These models are obtained based on five different capacitance models suitable for wide range of dimensions. Using these models pull-in voltages are computed for a range of dimensions and the results are compared with the experimentally verified 3D finite element analysis results. The results show that, for every given range of dimension, choice of the model changes for the evaluation of the pull-in voltage with a maximum deviation of 2%. Therefore for a given range of dimension appropriate closed form model is to be chosen for accurate computation of pull-in voltage. Computation of pull-in voltage of microgripper further validates the closed form models. The results again show that for a given range of dimension only a particular model evaluates the pull-in voltage with less error.
In this paper, passivity-based control (PBC) of a Luo converter-fed DC motor is implemented and presented. In PBC, both exact tracking error dynamics passive output feedback control (ETEDPOF) and energy shaping and damping injection methods do not require a speed sensor. As ETEDPOF does not depend upon state computation, it is preferred in the proposed work for the speed control of a DC motor under no-load and loaded conditions. Under loaded conditions, the online algebraic approach in sensorless mode (SAA) is used for estimating different load torques applied on the DC motor such as: constant, frictional, fan-type, propeller-type and unknown load torques. Performance of SAA is tested with the reduced order observer in sensorless mode (SROO) approach and analyzed, and the results are presented to validate the low-cost implementation of PBC for a DC drive without a speed and torque sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.