Missense variant Ile79Asn in human cardiac troponin T (cTnT-I79N) has been associated with hypertrophic cardiomyopathy and sudden cardiac arrest in juveniles. cTnT-I79N is located in the cTnT N-terminal (TnT1) loop region and is known for its pathological and prognostic relevance. A recent structural study revealed that I79 is part of a hydrophobic interface between the TnT1 loop and actin, which stabilizes the relaxed (OFF) state of the cardiac thin filament. Given the importance of understanding the role of TnT1 loop region in Ca
2+
regulation of the cardiac thin filament along with the underlying mechanisms of cTnT-I79N-linked pathogenesis, we investigated the effects of cTnT-I79N on cardiac myofilament function. Transgenic I79N (Tg-I79N) muscle bundles displayed increased myofilament Ca
2+
sensitivity, smaller myofilament lattice spacing, and slower crossbridge kinetics. These findings can be attributed to destabilization of the cardiac thin filament’s relaxed state resulting in an increased number of crossbridges during Ca
2+
activation. Additionally, in the low Ca
2+
-relaxed state (pCa8), we showed that more myosin heads are in the disordered-relaxed state (DRX) that are more likely to interact with actin in cTnT-I79N muscle bundles. Dysregulation of the myosin super-relaxed state (SRX) and the SRX/DRX equilibrium in cTnT-I79N muscle bundles likely result in increased mobility of myosin heads at pCa8, enhanced actomyosin interactions as evidenced by increased active force at low Ca
2+
, and increased sinusoidal stiffness. These findings point to a mechanism whereby cTnT-I79N weakens the interaction of the TnT1 loop with the actin filament, which in turn destabilizes the relaxed state of the cardiac thin filament.
Mesenchymal stem cells have many applications in medicine. Attention to the proliferation and differentiation of stem cell differentiation is an important issue. The aim of this study was to investigate the possibility of optimal isolation, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells (ADSCs) using human serum. Human serum (HS) was obtained from the venous blood of eight healthy individuals. The rate of proliferation and differentiation of ADSCs and expression of surface markers was assessed by flow cytometry. Bone differentiation was assessed using Alizarin Red staining. Data were analyzed using statistical software. Over time, HS showed more proliferation than fetal bovine serum (FBS) -enriched cells (p <0.05). Differentiation of ADSCs cells ls in HS-enriched medium is faster and more pronounced than differentiation in the control group. The expression of surface markers in the medium containing HS was the same as the medium containing FBS where the expression levels of CD105 and CD95 were found to be positive and the expression of CD34 and CD45 was negative. Due to the better proliferation of adipose tissue-derived mesenchymal cells in the medium containing HS than FBS, it is suggested that human serum be used in future clinical studies. Also, HS is healthier, safer, more accessible, and more affordable than FBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.