e Cholix toxin (ChxA) is a recently discovered exotoxin in Vibrio cholerae which has been characterized as a third member of the eukaryotic elongation factor 2-specific ADP-ribosyltransferase toxins, in addition to exotoxin A of Pseudomonas aeruginosa and diphtheria toxin of Corynebacterium diphtheriae. These toxins consist of three characteristic domains for receptor binding, translocation, and catalysis. However, there is little information about the prevalence of chxA and its genetic variations and pathogenic mechanisms. In this study, we screened the chxA gene in a large number (n ؍ 765) of V. cholerae strains and observed its presence exclusively in non-O1/non-O139 strains (27.0%; 53 of 196) and not in O1 (n ؍ 485) or O139 (n ؍ 84). Sequencing of these 53 chxA genes generated 29 subtypes which were grouped into three clusters designated chxA I, chxA II, and chxA III. chxA I belongs to the prototype, while chxA II and chxA III are newly discovered variants. ChxA II and ChxA III had unique receptor binding and catalytic domains, respectively, in comparison to ChxA I. Recombinant ChxA I (rChxA I) and rChxA II but not rChxA III showed variable cytotoxic effects on different eukaryotic cells. Although rChxA II was more lethal to mice than rChxA I when injected intravenously, no enterotoxicity of any rChxA was observed in a rabbit ileal loop test. Hepatocytes showed coagulation necrosis in rChxA I-or rChxA II-treated mice, seemingly the major target for ChxA. The present study illustrates the potential of ChxA as an important virulence factor in non-O1/non-O139 V. cholerae, which may be associated with extraintestinal infections rather than enterotoxicity.
Hepatic macrophages play crucial roles in hepatotoxicity. We investigated immunophenotypes of macrophages in liver injury induced in rats by thioacetamide (TAA; 300 mg/kg, intraperitoneal) after hepatic macrophage depletion; hepatic macrophages were depleted by liposomal clodronate (CLD; 10 ml/kg, i.v.) one day before TAA injection. Samples were obtained on post-TAA injection days 0, 1, 2, 3, 5, and 7. TAA injection induced coagulation necrosis of hepatocytes on days 1 through 3 and subsequent reparative fibrosis on days 5 and 7 in the centrilobular area, accompanied by increased numbers of M1 macrophages (expressing cluster of differentiation [CD]68 and major histocompatibility complex class II) and M2 macrophages (expressing CD163 and CD204) mainly on days 1 through 3. TAA þ CLD treatment markedly decreased the numbers of M1 and M2 macrophages mainly on days 1 through 3; CD163 þ Kupffer cells were most sensitive to CLD depletion. In TAA þ CLD-treated rats, interestingly, coagulation necrosis of hepatocytes was prolonged with more increased levels of hepatic enzymes (aspartate transaminase, alanine transaminase, and alkaline phosphatase) to TAA-treated rats; reparative fibrosis was incomplete and replaced by dystrophic calcification in the injured area, indicating the aggravated damage. Furthermore, in TAA þ CLD-treated rats, inflammatory factors (monocyte chemoattractant protein [MCP]-1, interferon-g, tumor necrosis factor-a, and interleukin-10) and fibrosis-related factors (transforming growth factor-b1, matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1) were decreased at messenger RNA levels, indicating abnormal macrophage functions. It was clearly demonstrated that hepatic macrophages have important roles in tissue damage and remodeling in hepatotoxicity.
Overdose of acetaminophen (APAP), an antipyretic drug, is an important cause of liver injury. However, the mechanism in the rat model remains undetermined. We analyzed APAP-induced hepatotoxicity using rats based on M1/M2-macrophage functions in relation to damage-associated molecular patterns (DAMPs) and autophagy. Liver samples from six-week-old rats injected with APAP (1000 mg/kg BW, ip, once) after 15 h fasting were collected at hour 10, and on days 1, 2, 3, and 5. Liver lesions consisting of coagulation necrosis and inflammation were seen in the affected centrilobular area on days 1 and 2, and then, recovered with reparative fibrosis by day 5. Liver exudative enzymes increased transiently on day 1. CD68+ M1-macrophages increased significantly on days 1 and 2 with increased mRNAs of M1-related cytokines such as IFN-g and TNF-α, whereas CD163+ M2-macrophages appeared later on days 2 and 3. Macrophages reacting to MHC class II and Iba1 showed M1-type polarization, and CD204+ macrophages tended to be polarized toward M2-type. At hour 10, interestingly, HMGB1 (representative DAMPs) and its related signals, TLR-9 and MyD88, as well as LC3B+ autophagosomes began to increase. Collectively, the pathogenesis of rat APAP hepatotoxicity, which is the first, detailed report for a rat model, might be influenced by macrophage functions of M1 type for tissue injury/inflammation and M2-type for anti-inflammatory/fibrosis; particularly, M1-type may function in relation to DAMPs and autophagy. Understanding the interplayed mechanisms would provide new insight into hepato-pathogenesis and contribute to the possible development of therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.