A new variational level set approach is proposed for lung nodule segmentation in lung CT scans. A general lung nodule shape model is proposed using implicit spaces as a signed distance function. The shape model is fused with the image intensity statistical information in a variational segmentation framework. The nodule shape model is mapped to the image domain by a global transformation that includes inhomogeneous scales, rotation, and translation parameters. A matching criteria between the shape model and the image implicit representations is employed to handle the alignment process. Transformation parameters evolve through gradient descent optimization to handle the shape alignment process and hence mark the boundaries of the nodule “head.” The embedding process takes into consideration the image intensity as well as prior shape information. A nonparametric density estimation approach is employed to handle the statistical intensity representation of the nodule and background regions. The proposed technique does not depend on nodule type or location. Exhaustive experimental and validation results are demonstrated on 742 nodules obtained from four different CT lung databases, illustrating the robustness of the approach.
In this paper, we revisit the implicit front representation and evolution using the vector level set function (VLSF) proposed in [1]. Unlike conventional scalar level sets, this function is designed to have a vector form. The distance from any point to the nearest point on the front has components (projections) in the coordinate directions included in the vector function. This kind of representation is used to evolve closed planar curves and 3D surfaces as well. Maintaining the VLSF property as the distance projections through evolution will be considered together with a detailed derivation of the vector partial differential equation (PDE) for such evolution. A shape-based segmentation framework will be demonstrated as an application of the given implicit representation. The proposed level set function system will be used to represent shapes to give a dissimilarity measure in a variational object registration process. This kind of formulation permits us to better control the process of shape registration, which is an important part in the shape-based segmentation framework. The method depends on a set of training shapes used to build a parametric shape model. The color is taken into consideration besides the shape prior information. The shape model is fitted to the image volume by registration through an energy minimization problem. The approach overcomes the conventional methods problems like point correspondences and weighing coefficients tuning of the evolution (PDEs). It is also suitable for multidimensional data and computationally efficient. Results in 2D and 3D of real and synthetic data will demonstrate the efficiency of the framework.
Semantic image segmentation plays a pivotal role in many vision applications including autonomous driving and medical image analysis. Most of the former approaches move towards enhancing the performance in terms of accuracy with a little awareness of computational efficiency. In this paper, we introduce LiteSeg, a lightweight architecture for semantic image segmentation. In this work, we explore a new deeper version of Atrous Spatial Pyramid Pooling module (ASPP) and apply short and long residual connections, and depthwise separable convolution, resulting in a faster and efficient model. LiteSeg architecture is introduced and tested with multiple backbone networks as Darknet19, MobileNet, and ShuffleNet to provide multiple trade-offs between accuracy and computational cost. The proposed model LiteSeg, with MobileNetV2 as a backbone network, achieves an accuracy of 67.81% mean intersection over union at 161 frames per second with 640 × 360 resolution on the Cityscapes dataset.Index Terms-semantic image segmentation, atrous spatial pyramid pooling, encoder decoder, and depthwise separable convolution.
We propose a novel approach for shape-based
Autism is a neurodevelopmental disorder that disrupts social and cognitive functions. Various autism studies revealed abnormalities in several brain regions. There is an increasing agreement from structural imaging studies on the abnormal anatomy of the white matter (WM) in autistic brains. In addition, the deficits in the size of the corpus callosum (CC) and its sub-regions in patients with autism relative to controls are well established. This paper presents two novel classification techniques of autism based on structural MRI. Our analysis is based on shape descriptions and geometric models. We compute the 3D distance map to describe the shape of the WM and use it as a statistical feature to discriminate between the two groups. We also use our recently proposed non-rigid registration technique [1] to devise another classification approach by statistically analyzing and comparing the deformation fields generated from registering CC's onto each others. The accuracy of our techniques was tested on postmortem and on invivo brain MR data. The results are very promising and show that, contrary to traditional methods, the proposed techniques are less sensitive to age and volume effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.