In the last few years, Sentiment Analysis regarding customers' reviews in order to comprehend the opinion polarity on social media has received considerable attention. However, the improvement of deep learning for sentiment analysis relating to customer reviews in Arabic language has received less attention. In fact, many users post and jot down their reviews in Arabic daily, so we ought to shed more light on Arabic sentiment analysis. Most likely all previous work depends on conventional classification techniques, such as KNN, Naï ve Bayes (NB), etc. But in this work, we implement two deep learning models: Long Short Term Memory (LSTM) and Convolution Neural Networks (CNN), in addition to three traditional techniques: Naï ve Bayes, K-Nearest Neighbor (KNN), Decision trees for sentiment analysis and compared the experimental results. Also, we offer a combined model from CNN and Recurrent Neural Network (RNN) architecture where this model collects local features through CNN as the input for RNN for Arabic sentiment analysis of short texts. An appropriate data preparation has been conducted for each utilized dataset. Our Conducted experiments for each dataset against traditional machine learning classifier; KNN, NB, and decision trees and regular deep learning models; CNN and LSTM, has resulted in impressive performance using our proposed combined (CNN-LSTM) model with an average accuracy of 85,83%, 86,88% for HTL and LABR datasets respectively.
<span>Recent studies show that social media has become an integral part of everyone's daily routine. People often use it to convey their ideas, opinions, and critiques. Consequently, the increasing use of social media has motivated malicious users to misuse online social media anonymity. Thus, these users can exploit this advantage and engage in socially unacceptable behavior. The use of inappropriate language on social media is one of the greatest societal dangers that exist today. Therefore, there is a need to monitor and evaluate social media postings using automated methods and techniques. The majority of studies that deal with offensive language classification in texts have used English datasets. However, the enhancement of offensive language detection in Arabic has gotten less consideration. The Arabic language has different rules and structures. This article provides a thorough review of research studies that have made use of artificial intelligence (AI) for the identification of Arabic offensive language in various contexts.</span>
<p>In recent years, as social media has grown in popularity, people have gained the ability to freely share their views. However, this may lead to users' conflict and hostility, resulting in unattractive online environments. Hate speech relates to using expressions or phrases that are violent, offensive, or insulting to a minority of people. The number of Arab social media users is quickly rising, and this is being followed by an increase in the frequency of cyber hate speech in the area. Therefore, the automated detection of Arabic hate speech has become a major concern for many stakeholders. The intersection of personality learning and hate speech detection is a relatively less studied niche. We suggest a novel approach that is focused on extracting personality trait features and using these features to detect Arabic hate speech. The experimental results show that the proposed approach is superior in terms of the macro-F1 score by achieving 82.3% compared to previous work reported in the literature.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.