The purpose of this study is to compare anatomical and visual outcomes after using silicone oil (SO) or C 3 F 8 gas as tamponades after pars plana vitrectomy (PPV) for retinal detachment (RD) associated with giant retinal tears (GRTs). Methods: A retrospective chart review was conducted for cases that underwent PPV for GRT-associated RD. We excluded eyes that had prior vitreoretinal surgery, a history of ocular trauma or worse than grade B proliferative vitreoretinopathy (PVR). Baseline demographic and ocular characteristics, surgical details and postoperative anatomical and visual outcomes were recorded and statistically analyzed. Results: We included 88 eyes; 48 eyes had C 3 F 8 gas and 40 eyes had SO as a tamponading agent. Mean age was 39 years. All eyes underwent 23G PPV with no adjuvant scleral buckling and phacovitrectomy was performed for all phakic eyes. Final retinal reattachment was achieved in 86 eyes (97.7%). One eye from each group had recurrent RD. Postoperative vision was significantly better in the gas group (p= 0.008). Prolonged increase of IOP developed in 6 eyes in the SO group and 5 eyes in the gas group. Prolonged uveitis developed in 4 eyes in the gas group and 6 eyes in the oil group (P= 0.04). Epiretinal membranes (ERM) developed in 10 eyes in the gas group and 9 eyes in the oil group. We found no significant difference between both groups regarding postoperative glaucoma or ERM formation. Conclusion: Both agents achieved similar favorable anatomical outcomes in a series of eyes with fresh GRT-associated RD and low-grade PVR, with better visual outcome and less frequent uveitis associated with the use of gas tamponade.
With advances in refractive surgery and demand for cataract removal and lens replacement, the ocular use of nonsteroidal anti-inflammatory drugs (NSAIDs) has increased. One of the most commonly used NSAIDs is diclofenac (Diclo). In this study, cyclodextrins (CDs), α-, β-, γ-, and HP-β-CDs, were investigated with in vitro irritation and in vivo ulceration models in rabbits to reduce Diclo toxicity. Diclo-, α-, β-, γ-, and HP-β-CD inclusion complexes were prepared and characterized and Diclo-CD complexes were evaluated for corneal permeation, red blood cell (RBCs) haemolysis, corneal opacity/permeability, and toxicity. Guest- (Diclo-) host (CD) solid inclusion complexes were formed only with β-, γ-, and HP-β-CDs. Amphipathic properties for Diclo were recorded and this surfactant-like functionality might contribute to the unwanted effects of Diclo on the surface of the eye. Contact angle and spreading coefficients were used to assess Diclo-CDs in solution. Reduction of ocular toxicity 3-fold to16-fold and comparable corneal permeability to free Diclo were recorded only with Diclo-γ-CD and Diclo-HP-β-CD complexes. These two complexes showed faster healing rates without scar formation compared with exposure to the Diclo solution and to untreated groups. This study also highlighted that Diclo-γ-CD and Diclo-HP-β-CD demonstrated fast healing without scar formation.
Purpose
Thermosensitive
in situ
gels have been around for decades but only a few have been translated into ophthalmic pharmaceuticals. The aim of this study was to combine the thermo-gelling polymer poloxamer 407 and mucoadhesive polymers chitosan (CS) and methyl cellulose (MC) for developing effective and long-acting ophthalmic delivery systems for L-carnosine (a natural dipeptide drug) for corneal wound healing.
Methods
The effect of different polymer combinations on parameters like gelation time and temperature, rheological properties, texture, spreading coefficients, mucoadhesion, conjunctival irritation potential,
in vitro
release, and
ex vivo
permeation were studied. Healing of corneal epithelium ulcers was investigated in a rabbit’s eye model.
Results
Both gelation time and temperature were significantly dependent on the concentrations of poloxamer 407 and additive polymers (chitosan and methyl cellulose), where it ranged from <10 s to several minutes. Mechanical properties investigated through texture analysis (hardness, adhesiveness, and cohesiveness) were dependent on composition. Promising spreading-ability, mucoadhesion, transcorneal permeation of L-carnosine, high ocular tolerability, and enhanced corneal epithelium wound healing were recorded for poloxamer 407/chitosan systems.
Conclusion
In situ
gelling systems comprising combinations of poloxamer-chitosan exhibited superior gelation time and temperature, mucoadhesion, and rheological characteristics suitable for effective long-acting drug delivery systems for corneal wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.