Modern computational models of attention predict fixations using saliency maps and target maps, which prioritize locations for fixation based on feature contrast and target goals, respectively. But whereas many such models are biologically plausible, none have looked to the oculomotor system for design constraints or parameter specification. Conversely, although most models of saccade programming are tightly coupled to underlying neurophysiology, none have been tested using real-world stimuli and tasks. We combined the strengths of these two approaches in MASC, a model of attention in the superior colliculus (SC) that captures known neurophysiological constraints on saccade programming. We show that MASC predicted the fixation locations of humans freely viewing naturalistic scenes and performing exemplar and categorical search tasks, a breadth achieved by no other existing model. Moreover, it did this as well or better than its more specialized state-of-the-art competitors. MASC's predictive success stems from its inclusion of high-level but core principles of SC organization: an over-representation of foveal information, size-invariant population codes, cascaded population averaging over distorted visual and motor maps, and competition between motor point images for saccade programming, all of which cause further modulation of priority (attention) after projection of saliency and target maps to the SC. Only by incorporating these organizing brain principles into our models can we fully understand the transformation of complex visual information into the saccade programs underlying movements of overt attention. With MASC, a theoretical footing now exists to generate and test computationally explicit predictions of behavioral and neural responses in visually complex real-world contexts.
We introduce a model of eye movements during categorical search, the task of finding and recognizing categorically defined targets. It extends a previous model of eye movements during search (target acquisition model, TAM) by using distances from an support vector machine classification boundary to create probability maps indicating pixel-by-pixel evidence for the target category in search images. Other additions include functionality enabling target-absent searches, and a fixation-based blurring of the search images now based on a mapping between visual and collicular space. We tested this model on images from a previously conducted variable set-size (6/13/20) present/absent search experiment where participants searched for categorically defined teddy bear targets among random category distractors. The model not only captured target-present/absent set-size effects, but also accurately predicted for all conditions the numbers of fixations made prior to search judgements. It also predicted the percentages of first eye movements during search landing on targets, a conservative measure of search guidance. Effects of set size on false negative and false positive errors were also captured, but error rates in general were overestimated. We conclude that visual features discriminating a target category from non-targets can be learned and used to guide eye movements during categorical search.
Saccades quite systematically undershoot a peripheral visual target by about 10% of its eccentricity while becoming more variable, mainly in amplitude, as the target becomes more peripheral. This undershoot phenomenon has been interpreted as the strategic adjustment of saccadic gain downstream of the superior colliculus (SC), where saccades are programmed. Here, we investigated whether the eccentricity-related increase in saccades' hypometria and imprecision might not instead result from overrepresentation of space closer to the fovea in the SC and visual-cortical areas. To test this magnification-factor (MF) hypothesis, we analyzed four parametric eye-movement data sets, collected while humans made saccades to single eccentric stimuli. We first established that the undershoot phenomenon generalizes to ordinary saccade amplitudes (0.5°-15°) and directions (0°-90°) and that landing-position distributions become not only increasingly elongated but also more skewed toward the fovea as target eccentricity increases. Moreover, we confirmed the MF hypothesis by showing (a) that the linear eccentricity-related increase in undershoot error and negative skewness canceled out when landing positions were log-scaled according to the MF in monkeys' SC and (b) that the spread, proportional to eccentricity outside an extended, 5°, foveal region, became circular and invariant in size in SC space. Yet the eccentricity-related increase in variability, slower near the fovea, yielded progressively larger and more elongated clusters toward foveal and vertical-meridian SC representations. What causes this latter, unexpected, pattern remains undetermined. Nevertheless, our findings clearly suggest that the undershoot phenomenon, and related variability, originate in, or upstream of, the SC, rather than reflecting downstream, adaptive, strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.