Background and aims. Due to anatomic variation in tooth anatomy between populations, this study compared the buccolingual (BL) and mesiodistal (MD) dimensions of primary molars with those of stainless steel crowns (SSCs) in anIranian population.Materials and methods. Impressions were taken from both dental arches of children, and casts were poured. Teeth with caries, restoration, hypoplasia or other dental anomalies were excluded. 216 primary molars were selected and divided into 4 groups of 54 each (maxillary and mandibular first and second primary molars). MD/BL dimensions were measured using a digital caliper with 0.01 mm precision on casts and SCCs (3M brand). Data were assessed using paired t-test, post hoc test and ANOVA. P < 0.05 was considered statistically significant.Results. The MD dimension of the lower first molar SSC and the BL dimension of the lower second molar SSC had the least difference with the corresponding values of the respective teeth. The MD dimension of the upper second molar SSC and the BL dimension of the upper first molar SSC had the greatest difference with the corresponding values in the respective teeth. Comparison of the two different brands of SSCs for the upper first molar revealed that both types had significant differences with the teeth in terms of both MD (P = 0.0) and BL (P = 0.0) dimensions.Conclusion. In the studied population, best adaptation was seen in second lower molars and the least adaptationswere seen in first and second upper molars.
Background: Approximately 2% of the human core promoter short tandem repeats (STRs) reach lengths of ≥6 repeats, which may in part be a result of adaptive evolutionary processes and natural selection. A single-exon transcript of the human nescient helix loop helix 2 (NHLH2) gene is flanked by the longest CA-repeat detected in a human protein-coding gene core promoter (Ensembl transcript ID: ENST00000369506.1). NHLH2 is involved in several biological and pathological pathways, such as motivated exercise, obesity, and diabetes. Methods: The allele and genotype distribution of the NHLH2 CA-repeat were investigated by sequencing in 655 Iranian subjects, consisting of late-onset neurocognitive disorder (NCD) as a clinical entity (n = 290) and matched controls (n = 365). The evolutionary trend of the CA-repeat was also studied across vertebrates. Results: The allele range was between 9 and 25 repeats in the NCD cases, and 12 and 24 repeats in the controls. At the frequency of 0.56, the 21-repeat allele was the predominant allele in the controls. While the 21-repeat was also the predominant allele in the NCD patients, we detected significant decline of the frequency (p < 0.0001) and homozygosity (p < 0.006) of this allele in this group. Furthermore, 12 genotypes were detected across 16 patients (5.5% of the entire NCD sample) and not in the controls (disease-only genotypes; p < 0.0003), consisting of at least one extreme allele. The extreme alleles were at 9, 12, 13, 18, and 19 repeats (extreme short end), and 23, 24, and 25 repeats (extreme long end), and their frequencies ranged between 0.001 and 0.04. The frequency of the 21-repeat allele significantly dropped to 0.09 in the disease-only genotype compartment (p <
PRKACB (Protein Kinase CAMP-Activated Catalytic Subunit Beta) is predominantly expressed in the brain, and regulation of this gene links to neuroprotective effects against tau and Aβ-induced toxicity. Here we studied a (GCC)-repeat spanning the core promoter and 5′ UTR of this gene in 300 human subjects, consisting of late-onset neurocognitive disorder (NCD) (N = 150) and controls (N = 150). We also implemented several models to study the impact of this repeat on the three-dimensional (3D) structure of DNA. While the PRKACB (GCC)-repeat was strictly monomorphic at 7-repeats, we detected two 7/8 genotypes only in the NCD group. In all examined models, the (GCC)7 and its periodicals had the least range of divergence variation on the 3D structure of DNA in comparison to the 8-repeat periodicals and several hypothetical repeat lengths. A similar inert effect on the 3D structure was not detected in other classes of short tandem repeats (STRs) such as GA and CA repeats. In conclusion, we report monomorphism of a long (GCC)-repeat in the PRKACB gene in human, its inert effect on DNA structure, and enriched divergence in late-onset NCD. This is the first indication of natural selection for a monomorphic (GCC)-repeat, which probably evolved to function as an “epigenetic knob”, without changing the regional DNA structure.
The human X-linked zinc finger MYM-type protein 3 (ZMYM3) contains the longest GA-STR identified across protein-coding gene 5′ UTR sequences, at 32-repeats. This exceptionally long GA-STR is located at a complex string of GA-STRs with a human-specific formula across the complex as follows: (GA)8-(GA)4-(GA)6-(GA)32 (ZMYM3-207 ENST00000373998.5). ZMYM3 was previously reported among the top three genes involved in the progression of late-onset Alzheimer’s disease. Here we sequenced the ZMYM3 GA-STR complex in 750 human male subjects, consisting of late-onset neurocognitive disorder (NCD) as a clinical entity (n = 268) and matched controls (n = 482). We detected strict monomorphism of the GA-STR complex, except of the exceptionally long STR, which was architecturally skewed in respect of allele distribution between the NCD cases and controls [F (1, 50) = 12.283; p = 0.001]. Moreover, extreme alleles of this STR at 17, 20, 42, and 43 repeats were detected in seven NCD patients and not in the control group (Mid-P exact = 0.0003). A number of these alleles overlapped with alleles previously found in schizophrenia and bipolar disorder patients. In conclusion, we propose selective advantage for the exceptional length of the ZMYM3 GA-STR in human, and its link to a spectrum of diseases in which major cognition impairment is a predominant phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.