Chain extension/branching by reactive processing is a well‐known method to enhance the rheological properties of polymers. In this study, pyromellitic dianhydride, poly(glycolic acid), triglycidyl isocyanurate, and bisphenol A diglycidyl ether were used as chain extender/branching agents to produce branched Polyethylene terephthalate (PETs) with four different molecular structures. According to the linear rheological characterizations, the storage modulus and complex viscosity of modified PET samples enhanced significantly after branching. The shear viscosities of modified PET show a pronounced shear‐thinning behavior and a remarkable increase at low frequencies, which can be an indication of the existence of long‐chain branches (LCBs) in the molecular structure of polymer and broadening the molecular weight distribution. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analysis were used to investigate the effect of branching agents on the chemical structure and thermal properties of PET, respectively. DSC results show that higher amounts of LCBs lead to lower melting and crystallization temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.