The multi-physics of piezoelectric materials under different environmental conditions has been an active research subject for a few decades. Particularly, the thermoelastic behaviour of smart materials and structures is of great importance to their reliability in different applications. Traditionally, the Fourier heat conduction theory was introduced in dealing with the thermoelastic reactions of smart materials and structures. This may lead to reasonable analyses and useful guidelines in design of smart structures, especially when no severe thermal gradient is involved. However, when a severe thermal gradient is indeed involved in the service environment of a smart structure, the analysing results based on the Fourier heat conduction theory is unrealistic and usually rendered useless. Non-Fourier heat conduction theories have been introduced in the thermoelastic analysis of smart materials and structures in recent years and resulted in reasonable results. In this paper, we review the recent results of a thermopiezoelectric problem of a one-dimensional (1-D), finite length, functionally graded medium excited by a moving heat source using both the Fourier and Non-Fourier heat conduction theories. Numerical examples are displayed to illustrate the effects of non-homogeneity index, length and thermal relaxation time on the results.
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/copyright Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=ae5751ff-866f-46fd-b271-2480437e6fe4 http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=ae5751ff-866f-46fd-b271-2480437e6fe4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.