A problem that impedes the progress in Brain-Computer Interface (BCI) research is the difficulty in reproducing the results of different papers. Comparing different algorithms at present is very difficult. Some improvements have been made by the use of standard datasets to evaluate different algorithms. However, the lack of a comparison framework still exists. In this paper, we construct a new general comparison framework to compare different algorithms on several standard datasets. All these datasets correspond to sensory motor BCIs, and are obtained from 21 subjects during their operation of synchronous BCIs and 8 subjects using self-paced BCIs. Other researchers can use our framework to compare their own algorithms on their own datasets. We have compared the performance of different popular classification algorithms over these 29 subjects and performed statistical tests to validate our results. Our findings suggest that, for a given subject, the choice of the classifier for a BCI system depends on the feature extraction method used in that BCI system. This is in contrary to most of publications in the field that have used Linear Discriminant Analysis (LDA) as the classifier of choice for BCI systems.
This meta-analysis indicates a role for IL-10 polymorphisms in IBS in general and TNF in Asian populations. Whether or not gene polymorphisms are associated with alterations in cytokine levels leading to functional effects at the level of the gut needs further investigation.
Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.
The new compression standard, known as the High Efficiency Video Coding (HEVC), aims at significantly improving the compression efficiency compared to previous standards. There has been significant interest in developing a scalable version of this standard. As expected, the HEVC scalable video version, which is called SHVC, increases the complexity of the codec compared to the non-scalable counterpart. In this paper, we propose an adaptive fast mode assigning method based on a Bayesian classifier that reduces SHVC's coding complexity by up to 68.55%, while maintaining the overall quality and bit-rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.