Background: At the end of December 2019, a novel coronavirus tentatively named SARS-CoV-2 in Wuhan, a central city in China, was announced by the World Health Organization. SARS-CoV-2 is an RNA virus that has become a major public health concern after the outbreak of the Middle East Respiratory Syndrome-CoV (MERS-CoV) and Severe Acute Respiratory Syndrome-CoV (SARS-CoV) in 2002 and 2012, respectively. As of 29 October 2020, the total number of COVID-19 cases had reached over 44 million worldwide, with more than 1.17 million confirmed deaths. Discussion: SARS-CoV-2 infected patients usually present with severe viral pneumonia. Similar to SARS-CoV, the virus enters respiratory tract cells via the angiotensinconverting enzyme receptor 2. The structural proteins play an essential role in budding the virus particles released from different host cells. To date, an approved vaccine or treatment option of a preventive character to avoid severe courses of COVID-19 is still not available. Conclusions: In the present study, we provide a brief review of the general biological features of CoVs and explain the pathogenesis, clinical symptoms and diagnostic approaches regarding monitoring future infectivity and prevent emerging COVID-19 infections.
The novel COVID-19 outbreak is a major health threat to human beings with multiorgan injuries. However, its endocrine system manifestations are much less studied. In this study, we aimed to reassess the available findings on the association between cortisol level and severity of COVID-19 infection. We conducted a systematic search on Medline/PubMed, Scopus, Web of Science, and Cochrane Library databases. To pool data, a random-effects model was performed depending on the heterogeneity among studies. Sensitivity analysis was also carried out by removing each study systematically. In addition, subgroup and meta-regression analyses were performed depending on the presence of the variables of sex and age. Subsequently, 11 studies (5 observational studies and 6 case reports) were included in the meta-analysis. Pooled analysis on the observational studies showed significantly higher levels of cortisol in patients with severe COVID-19 in comparison with those with mild-to-moderate COVID-19 (standardized mean difference: 1.48 µg/dL; 95% CI (0.51 to 2.46); p=0.003). Assessment of the results of case reports revealed that the patients with severe COVID-19 demonstrated higher cortisol levels than the patients with mild-to-moderate COVID-19. No publication bias was observed using the Begg’s (p=0.08) and Egger’s tests (p=0.09). Meta-regression illustrated a significant correlation between cortisol levels with sex. The serum cortisol level seems to be higher in patients with severe COVID-19 infection. This finding could be helpful to detect patients with poor prognosis at early stages of the disease, although age and sex may modify this level.
Introduction: A variety of genetic predisposing factors and environmental factors are known to influence the pathogenesis of type-1 diabetes (T1D). This study intended to investigate the association of cytotoxic T-lymphocyte associated protein 4 (CTLA4) and interleukin 2 receptor subunit alpha (IL2RA) gene polymorphisms with type 1 diabetes in children of northwest of Iran. Methods: Genomic DNA was extracted by salting-out method. PCR amplification and direct sequencing methods were used for genotyping of CTLA4 (exon 1) and IL2RA (intron 1) genes in all patients and controls. SNPStats was used to calculate odds ratios (ORs), 95% confidence intervals (CIs), and p values. Results: In this study, the frequency of G allele and GG genotype of CTLA-4 (+49A/G) polymorphism in T1D patients were significantly different from those in the controls (26% vs. 11%, p = 0.006). Moreover, a significant difference was observed between patients and control group in the allele frequencies of the new SNP (chr2:203868145) that was identified in exon one of CTLA4 (14% vs. 3%, p = 0.006). The results showed that the GG homozygous genotype of +49 A>G was associated with increased glycemic level in T1D patients in the study population (95% CI = 10.47, p = 0.0067). However, no significant association was found between IL2RA (ss52580101C>A) polymorphism and T1D patients (2% vs. 4%, p = 0.41). Conclusion: The results further support the association of T1D with +49A>G SNP in the CTLA4 gene in the population of northwest of Iran. However, no significant relationship was observed between ss52580101C>A polymorphism of IL2RA gene and T1D in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.