Using batch method, the adsorption of thallium(I) ions from aqueous solutions on eucalyptus leaves powder, as a low cost adsorbent, was studied. The effect of various modification of considered adsorbent on the adsorption percentage of Tl(I) is an important feature of this study. The results showed that the unmodified and acidic modified adsorbent are the poor adsorbents for the Tl(I) ions while basic modified adsorbent is a suitable adsorbent. Also, the effect of some experimental conditions such as solution initial pH, agitation speed, contact time, sorbent dosage, temperature, particle size, and thallium initial concentration was studied. The results showed that the adsorption percentage depends on the conditions and the process is strongly pH‐dependent. The satisfactory adsorption percentage of Tl(I) ions, 81.5%, obtained at 25 ± 1°C. The equilibrium data agreed fairly better with Langmuir isotherm than Freundlich and Temkin models. The value of qm that was obtained by extrapolation method is 80.65 mg g−1. Separation factor values, RL, showed that eucalyptus leaves powder is favorable for the sorption of Tl(I). The negative values of ΔH0 and ΔS0 showed that the Tl(I) sorption is an exothermic process and along with decrease of randomness at the solid–solution interface during sorption, respectively.
In this study, the adsorption of thallium (I) ion as a dangerous pollutant from aqueous solution onto modified ZnO nanopowder as a fairly cheap adsorbent has been examined in batch mode. It was known that modification of the adsorbent was necessary to reach a significant adsorption percentage. The adsorbent used here was modified by sodium phosphate solution. The effect of experimental conditions such as initial pH of solution, contact time, adsorbent dosage, initial concentration of thallium and temperature is studied. The results showed the dependence of the adsorption percentage to these conditions specially its pH. The maximum adsorption percentage of Tl (I) ions at 25±1oC was 92.8%. Freundlich isotherm model provided a better fit with the experimental data than Langmuir and Temkin isotherm models by high correlation. Separation factor, RL, values showed that modified ZnO nanopowder was favorable for the adsorption of Tl (I) ion. The negative value of ΔH0 showed that Tl (I) sorption is an exothermic process and the negative value of ΔS0 represented that there is a little decrease of randomness at the solid-solution interface during sorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.