Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted.
Chronic non-healing wounds are major healthcare challenges that affect a noticeable number of people; they exert a severe financial burden and are the leading cause of limb amputation. Although chronic wounds are locked in a persisting inflamed state, they are dynamic and proper therapy requires identifying abnormalities, administering proper drugs and growth factors, and modulating the conditions of the environment. In this review article, we discuss technologies that have been developed to actively monitor the wound environment. We also highlight drug delivery tools that have been integrated with bandages to facilitate precise temporal and spatial control over drug release and review automated or semi-automated systems that can respond to the wound environment.
Chronic wounds are one of the most devastating complications of diabetes and are the leading cause of nontraumatic limb amputation. Despite the progress in identifying factors and promising in vitro results for the treatment of chronic wounds, their clinical translation is limited. Given the range of disruptive processes necessary for wound healing, different pharmacological agents are needed at different stages of tissue regeneration. This requires the development of wearable devices that can deliver agents to critical layers of the wound bed in a minimally invasive fashion. Here, for the first time, a programmable platform is engineered that is capable of actively delivering a variety of drugs with independent temporal profiles through miniaturized needles into deeper layers of the wound bed. The delivery of vascular endothelial growth factor (VEGF) through the miniaturized needle arrays demonstrates that, in addition to the selection of suitable therapeutics, the delivery method and their spatial distribution within the wound bed is equally important. Administration of VEGF to chronic dermal wounds of diabetic mice using the programmable platform shows a significant increase in wound closure, re‐epithelialization, angiogenesis, and hair growth when compared to standard topical delivery of therapeutics.
BackgroundInadequate epidemiologic investigations of the paranasal sinuses malignancies prompted this retrospective study with special emphasis on a major group of 111 tumors.Material and MethodsClinical records of 111 patients with histologically confirmed malignant tumors of the paranasal sinuses were investigated retrospectively from April 2000 to January 2012. Collection of data included demographic information, clinical manifestations, treatment plans, and histopathology of the tumor.ResultsThere were 69 (62.16%) male and 42 (37.83%) female patients (male-to-female ratio of 1.6:1), with a median age of 49±12.2 years (range 21 to 88 years). A high level of occurrence was noticed in the fifth (26.3%) decade of life. The most frequent histological types were squamous cell carcinoma (43.5%) and adenoid cystic carcinoma (19%). Among clinical manifestations, nasal obstruction was the most frequent followed by diplopia, and facial swelling. Fifty three patients (47.74%) were treated with combined approach of surgery and radiation therapy.ConclusionsParanasal sinuses malignancies are rare conditions with nonspecific symptoms which make early diagnosis of the lesions more challenging. The optimal therapeutic protocol for patients suffering from these tumors is still a somewhat controversial entity and requires further studies. Key words:Paranasal sinuses, malignancy, surgery,radiotherapy.
A major impediment preventing normal wound healing is insufficient vascularization, which causes hypoxia, poor metabolic support, and dysregulated physiological responses to injury. To combat this, the delivery of angiogenic factors, such as vascular endothelial growth factor (VEGF), has been shown to provide modest improvement in wound healing. Here, the importance of specialty delivery systems is explored in controlling wound bed drug distribution and consequently improving healing rate and quality. Two intradermal drug delivery systems, miniaturized needle arrays (MNAs) and liquid jet injectors (LJIs), are evaluated to compare effective VEGF delivery into the wound bed. The administered drug's penetration depth and distribution in tissue are significantly different between the two technologies. These systems' capability for efficient drug delivery is first confirmed in vitro and then assessed in vivo. While topical administration of VEGF shows limited effectiveness, intradermal delivery of VEGF in a diabetic murine model accelerates wound healing. To evaluate the translational feasibility of the strategy, the benefits of VEGF delivery using MNAs are assessed in a porcine model. The results demonstrate enhanced angiogenesis, reduced wound contraction, and increased regeneration. These findings show the importance of both therapeutics and delivery strategy in wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.