Many visual recognition problems can be approached by counting instances. To determine whether an event is present in a long internet video, one could count how many frames seem to contain the activity. Classifying the activity of a group of people can be done by counting the actions of individual people. Encoding these cardinality relationships can reduce sensitivity to clutter, in the form of irrelevant frames or individuals not involved in a group activity. Learned parameters can encode how many instances tend to occur in a class of interest. To this end, this paper develops a powerful and flexible framework to infer any cardinality relation between latent labels in a multi-instance model. Hard or soft cardinality relations can be encoded to tackle diverse levels of ambiguity. Experiments on tasks such as human activity recognition, video event detection, and video summarization demonstrate the effectiveness of using cardinality relations for improving recognition results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.