Abstract. One of the main challenges in software verification is efficient and precise compositional analysis of programs with procedures and loops. Interpolation methods remains one of the most promising techniques for such verification, and are closely related to solving Horn clause constraints. We introduce a new notion of interpolation, disjunctive interpolation, which solves a more general class of problems in one step compared to previous notions of interpolants, such as tree interpolants or inductive sequences of interpolants. We present algorithms and complexity for construction of disjunctive interpolants, as well as their use within an abstraction-refinement loop. We have implemented Horn clause verification algorithms that use disjunctive interpolants and evaluate them on benchmarks expressed as Horn clauses over the theory of integer linear arithmetic.
This paper presents the ELDARICA version 2 model checker. Over the last years we have been developing and maintaining ELDARICA as a state-of-the-art solver for Horn clauses over integer arithmetic. In the version 2, we have extended the solver to support also algebraic data types and bit-vectors, theories that are commonly applied in verification, but currently unsupported by most Horn solvers. This paper describes the high-level structure of the tool and the interface that it provides to other applications. We also report on an evaluation of the tool. While some of the techniques in ELDARICA have been documented in research papers over the last years, this is the first tool paper describing ELDARICA in its entirety.
Abstract. This paper presents a publicly available toolkit and a benchmark suite for rigorous verification of Integer Numerical Transition Systems (INTS), which can be viewed as control-flow graphs whose edges are annotated by Presburger arithmetic formulas. We present FLATA and ELDARICA, two verification tools for INTS. The FLATA system is based on precise acceleration of the transition relation, while the ELDARICA system is based on predicate abstraction with interpolation-based counterexample-driven refinement. The ELDARICA verifier uses the PRINCESS theorem prover as a sound and complete interpolating prover for Presburger arithmetic. Both systems can solve several examples for which previous approaches failed, and present a useful baseline for verifying integer programs. The infrastructure is a starting point for rigorous benchmarking, competitions, and standardized communication between tools.
Abstract. We present Counterexample-Guided Accelerated Abstraction Refinement (CEGAAR), a new algorithm for verifying infinite-state transition systems. CEGAAR combines interpolation-based predicate discovery in counterexampleguided predicate abstraction with acceleration technique for computing the transitive closure of loops. CEGAAR applies acceleration to dynamically discovered looping patterns in the unfolding of the transition system, and combines overapproximation with underapproximation. It constructs inductive invariants that rule out an infinite family of spurious counterexamples, alleviating the problem of divergence in predicate abstraction without losing its adaptive nature. We present theoretical and experimental justification for the effectiveness of CE-GAAR, showing that inductive interpolants can be computed from classical Craig interpolants and transitive closures of loops. We present an implementation of CEGAAR that verifies integer transition systems. We show that the resulting implementation robustly handles a number of difficult transition systems that cannot be handled using interpolation-based predicate abstraction or acceleration alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.