SUMMARYIn this paper, a new sensor-based approach called nonholonomic random replanner (NRR) is presented for motion planning of car-like mobile robots. The robot is incrementally directed toward its destination using a nonholonomic rapidly exploring random tree (RRT) algorithm. At each iteration, the robot's perceived map of the environment is updated using sensor readings and is used for local motion planning. If the goal was not visible to the robot, an approximate path toward the goal is calculated and the robot traces it to an extent within its sensor range. The robot updates its motion to goal through replanning. This procedure is repeated until the goal lies within the scope of the robot, after which it finds a more precise path by sampling in a tighter Goal Region for the nonholonomic RRT. Three main replanning strategies are proposed to decide when to perform a visibility scan and when to replan a new path. Those are named Basic, Deliberative and Greedy strategies, which yield different paths. The NRR was also modified for motion planning of Dubin's car-like robots. The proposed algorithm is probabilistically complete and its effectiveness and efficiency were tested by running several simulations and the resulting runtimes and path lengths were compared to the basic RRT method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.