The paper presents a quantization-theoretic framework for studying incremental Σ∆ quantization systems. The framework makes it possible to efficiently compute the quantization intervals and hence the transfer function of the quantizer, and to determine the mean square error (MSE) and maximum error for the optimal and conventional linear filters for first and second order incremental Σ∆ modulators. The results show that the optimal filter can significantly outperform conventional linear filters in terms of both MSE and maximum error. The performance of conventional Σ∆ quantizers is then compared to that of incremental Σ∆ with optimal filtering for bandlimited signals. It is shown that incremental Σ∆ can outperform the conventional approach in terms of signal to noise+distortion ratio (SNDR) and the characteristics of the power spectral density (PSD). The framework is also used to provide a simpler and more intuitive derivation of the Zoomer algorithm.
The paper investigates the suitability of Σ∆ modulation based FPA readout schemes for use in Vertically Interconnected Sensor Arrays requiring ultra high dynamic range and frame rate. It is shown that the extended counting scheme is capable of achieving the DR and frame rate requirements but at the expense of high power consumption. Extended counting is also shown to outperform several other HDR schemes in terms of SNR at the ultra high DR and frame rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.