Joint encryption-encoding schemes have been released to fulfill both reliability and security desires in a single step. Using Low Density Parity Check (LDPC) codes in joint encryption-encoding schemes, as an alternative to classical linear codes, would shorten the key size as well as improving error correction capability. In this article, we present a joint encryption-encoding scheme using Quasi Cyclic-Low Density Parity Check (QC-LDPC) codes based on finite geometry. We observed that our proposed scheme not only outperforms its predecessors in key size and transmission rate, but also remains secure against all known cryptanalyses of code-based secret key cryptosystems. We subsequently show that our scheme benefits from low computational complexity. In our proposed joint encryption-encoding scheme, by taking the advantage of QC-LDPC codes based on finite geometries, the key size decreases to 1/5 of that of the so far best similar system. In addition, using our proposed scheme a wide range of desirable transmission rates are achievable. This variety of codes makes our cryptosystem suitable for a number of different communication and cryptographic standards.
Abstract-The explosive growth in users' demand in both areas of wireless communications and power generation has led to design of new key technologies that will be dominant in the near future; cognitive radio networks in communications and smart grid in power field. This paper proposes a novel scenario to marry these technologies together by using a cognitive radio ad hoc network (CRAHN) as the foundation of smart grid communications. In particular, the formation and throughput of a citywide network, the information transferred by the network, and how this structure can be relied upon in disasters is discussed and compared to the state-of-the-art.Index Terms-disaster management, cognitive radio, ad hoc networks, smart grid communications, femtocell.
In this paper, a dynamic-hybrid automatic repeat request (D-HARQ) scheme with guaranteed delay performance is proposed. As opposed to the conventional HARQ that the maximum number of re-transmissions, L, is fixed, in the proposed scheme packets can be re-transmitted more times given that the previous packet was received with less than L re-transmissions. The dynamic of the proposed scheme is analyzed using the Markov model. For delay sensitive applications, the proposed scheme shows a superior performance in terms of packet error rate compared with the conventional HARQ and Fixed retransmission schemes when the channel state information is not available at the transmitter. We further show that D-HARQ achieves a higher throughput compared with the conventional HARQ and fixed re-transmission schemes under the same reliability constraint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.