Abstract-This paper presents a new method based on the electromagnetic time-reversal (EMTR) theory for locating faults in power networks. The applicability of the EMTR technique to locate faults is first discussed. Using the classical transmission-line equations in the frequency domain, analytical expressions are derived to infer the location of the fault. The accuracy of the proposed method is then discussed in relation to the number of observation points adopted to record the fault-originated electromagnetic transients. Then, this paper illustrates the extension of the proposed method to the time domain. The experimental validation of the proposed method is presented by making reference to a reduced-scale coaxial cable system where real faults are hardware-emulated. Finally, the application of the proposed EMTRbased fault-location method to Electromagnetic Transients Program-simulated cases is presented. The simulated test cases are: a mixed overhead/coaxial cable transmission system and the IEEE 34-bus distribution test feeder. Compared to other transient-based fault-location techniques, the proposed method presents a number of advantages, namely, its straightforward applicability to inhomogeneous media (mixed overhead and coaxial power cable lines), the use of a single observation (measurement) point, and robustness against fault type and fault impedance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.