Acute respiratory distress syndrome is a common complication of severe viral pneumonia, such as influenza and COVID‐19, that requires critical care including ventilatory support, use of corticosteroids and other adjunctive therapies to arrest the attendant massive airways inflammation. Although recommended for the treatment of viral pneumonia, steroid therapy appears to be a double‐edged sword, predisposing patients to secondary bacterial and invasive fungal infections (IFIs) whereby impacting morbidity and mortality. Mucormycosis is a fungal emergency with a highly aggressive tendency for contiguous spread, associated with a poor prognosis if not promptly diagnosed and managed. Classically, uncontrolled diabetes mellitus (DM) and other immunosuppressive conditions including corticosteroid therapy are known risk factors for mucormycosis. Upon the background lung pathology, immune dysfunction and corticosteroid therapy, patients with severe viral pneumonia are likely to develop IFIs like aspergillosis and mucormycosis. Notably, the combination of steroid therapy and DM can augment immunosuppression and hyperglycaemia, increasing the risk of mucormycosis in a susceptible individual. Here, we report a case of sinonasal mucormycosis in a 44‐year‐old woman with hyperglycaemia secondary to poorly controlled diabetes following dexamethasone therapy on a background of influenza pneumonia and review 15 available literatures on reported cases of influenza and COVID‐19 associated mucormycosis.
Intra- and interspecies variations of the translation elongation factor 1-α (Tef-1α) gene were evaluated as a new identification marker in a wide range of dermatophytes, which included 167 strains of 30 species. An optimized pan-dermatophyte primer pair was designed, and the target was sequenced. Consensus sequences were used for multiple alignment and phylogenetic tree analysis and the levels of intra- and interspecific nucleotide polymorphism were assessed. Between species, the analyzed part of the Tef-1α gene varied in length from 709 to 769 nucleotides. Significant numbers of species including Trichophyton rubrum, T. tonsurans, T. schoenleinii, T. concentricum, T. violaceum, Epidermophyton floccosum, Microsporum ferrugineum, M. canis, M. audouinii, T. equinum, T. eriotrephon, and T. erinacei were invariant in Tef-1α and had sufficient barcoding distance with neighboring species. Although overall consistency was found between ITS phylogeny as the current molecular marker of dermatophytes and Tef-1α, a higher discriminatory power of Tef-1α appeared particularly useful in some clades of closely related species such as the A. vanbreuseghemii, T. rubrum, A. benhamiae, and A. otae complexes. Nevertheless, we stress that a single gene can not specify species borderlines among dermatophytes and multiple lines of evidence based on a multilocus inquiry may ascertain an incontrovertible evaluation of kinship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.