In this paper, an ensemble method, which demonstrated efficiency in GIS based flood modeling, was used to create flood probability indices for the Damansara River catchment in Malaysia. To estimate flood probability, the frequency ratio (FR) approach was combined with support vector machine (SVM) using a radial basis function kernel. Thirteen flood conditioning parameters, namely, altitude, aspect, slope, curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, distance from river, geology, soil, surface runoff, and land use/cover (LULC), were selected. Each class of conditioning factor was weighted using the FR approach and entered as input for SVM modeling to optimize all the parameters. The flood hazard map was produced by combining the flood probability map with flood-triggering factors such as; averaged daily rainfall and flood inundation depth. Subsequently, the hydraulic 2D high-resolution sub-grid model (HRS) was applied to estimate the flood inundation depth. Furthermore, vulnerability weights were assigned to each element at risk based on their importance. Finally flood risk map was generated. The results of this research demonstrated that the proposed approach would be effective for flood risk management in the study area along the expressway and could be easily replicated in other areas.
Landslide is one of the most devastating natural disasters across the world with serious negative impact on its inhabitants and the environs. Landslide is considered as a type of soil erosion which could be shallow, deep-seated, cut slope, bare soil, and so on. Distinguishing between these types of soil erosions in dense vegetation terrain like Cameron Highlands Malaysia is still a challenging issue. Thus, it is difficult to differentiate between these erosion types using traditional techniques in locations with dense vegetation. Light detection and ranging (LiDAR) can detect variations in terrain and provide detailed topographic information on locations behind dense vegetation. This paper presents a hierarchical rulebased classification to obtain accurate map of landslide types. The performance of the hierarchical rule set classification using LiDAR data, orthophoto, texture, and geometric features for distinguishing between the classes would be evaluated. Fuzzy logic supervised approach (FbSP) was employed to optimize the segmentation parameters such as scale, shape, and compactness. Consequently, a correlation-based feature selection technique was used to select relevant features to develop the rule sets. In addition, in other to differentiate between deep-seated cover under shadow and normal shadow, the band ration was created by dividing the intensity over the green band. The overall accuracy and the kappa coefficient of the hierarchal rule set classification were found to be 90.41 and 0.86%, respectively, for site A. More so, the hierarchal rule sets were evaluated using another site named site B, and the overall accuracy and the kappa coefficient were found to be 87.33 and 0.81%, respectively. Based on these results, it is demonstrated that the proposed methodology is highly effective in improving the classification accuracy. The LiDAR DEM data, visible bands, texture, and geometric features considerably influence the accuracy of differentiating between landslide types such as shallow and deep-seated and soil erosion types like cut slope and bare soil. Therefore, this study revealed that the proposed method is efficient and well-organized for differentiating among landslide and other soil erosion types in tropical forested areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.