Automatic test pattern generation (ATPG) is one of the important issues in testing digital circuits. Due to considerable advances made in the past two decades, the ATPG algorithms that are based on Boolean satisfiability have become an integral part of the digital circuits. In this paper, a new method for ATPG for testing bridging faults is introduced. First of all, the application of Boolean satisfiability to circuit modeling is explained. Afterwards, a new method of testing the nonfeedback bridging faults in the combinational circuits is proposed based on Boolean satisfiability. In the proposed method, the faulty circuit is obtained by injecting the faulty gate into the main circuit. Afterwards, the final differential circuit is prepared by using the fault-free and the faulty circuits. Finally, using the resulting differential circuit, the testability of the fault is assessed and the input pattern for detecting the fault in the main circuit is derived. The experimental results presented at the end of this paper indicate the effectiveness and usefulness of this method for testing the bridging faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.