IntroductionMesenchymal stromal cells (MSCs) are multipotent stem cells able to differentiate into mesoderm-derived cells, 1 and exhibit immunoregulatory properties. 2 MSCs have been used in the context of allogeneic hematopoietic stem cell transplantation to improve hematopoietic engraftment, to prevent graft failure, and to reduce the incidence or severity of acute graft-versus-host disease (GVHD). [3][4][5] MSCs obtained from bone marrow (BM) can undergo in vitro expansion in medium containing either fetal calf serum (FCS), with or without fibroblast growth factor (FGF-2), or platelet lysate (PL). 6 However, little is known about the effect of donor selection or culture conditions on the functional properties and therapeutic potential of clinical-grade MSCs.Recent studies have suggested that MSCs can contribute to tumor growth and metastasis. 7 A related concern is the capacity of MSCs for oncogenic transformation. Mouse MSCs show chromosomal abnormalities and are highly susceptible to transformation associated with an increased telomerase activity and myc expression, and a loss of p53 and p16. [8][9][10] In contrast, human MSCs are more resistant to transformation in vitro with no genomic instability detected and no tumor induced after long-term in vivo transfer. [11][12][13][14][15] After 20 to 50 population doublings (PDs), human MSCs undergo replicative senescence, with telomere shortening and increased p16 expression. 16 They require the same steps to achieve transformation as for differentiated cells, suggesting that they are not prone to spontaneous transformation. 17 Nevertheless, one recent study described the transformation of human adipose tissue-derived MSCs with up-regulation of myc, repression of p16, acquisition of telomerase activity, 18 and generation of carcinoma in mice. 19 We investigated the immune properties and resistance to transformation of MSCs produced in 4 cell therapy facilities during 2 multicenter clinical trials designed to evaluate the capacity of BM-MSCs to prevent acute GVHD or to treat irradiationinduced lesions. MethodsDetails regarding methods are provided in the supplemental data (available on the Blood website; see the Supplemental Materials link at the top of the online article). For personal use only. on March 28, 2019. by guest www.bloodjournal.org From (1A to 11A) were done for the GVHD prevention clinical trial, and 4 (12A, 13A2) to treat accidentally irradiated patients. For irradiated patients, 5 supplemental MSC productions (12B to 16B) were done using human PL. 6 MSC production Growth kinetics and MSC characterizationGrowth kinetics was assessed by studying total fold increase, total number of PDs, and colony-forming unit-fibroblast. MSCs were screened for the expression of CD45, CD73, CD105, CD90, and human leukocyte antigen-DR (HLA-DR) and were also checked for their capacity to stimulate the growth of allogeneic peripheral blood mononuclear cells (PBMCs) and to inhibit alloantigen-driven proliferation of PBMCs. Cytogenetic analysisAt the end of the first (P ...
Purpose The Group for Research in Adult Acute Lymphoblastic Leukemia (GRAALL) recently reported a significantly better outcome in T-cell acute lymphoblastic leukemia (T-ALL) harboring NOTCH1 and/or FBXW7 (N/F) mutations compared with unmutated T-ALL. Despite this, one third of patients with N/F-mutated T-ALL experienced relapse. Patients and Methods In a series of 212 adult T-ALLs included in the multicenter randomized GRAALL-2003 and -2005 trials, we searched for additional N/K-RAS mutations and PTEN defects (mutations and gene deletion). Results N/F mutations were identified in 143 (67%) of 212 patients, and lack of N/F mutation was confirmed to be associated with a poor prognosis. K-RAS, N-RAS, and PTEN mutations/deletions were identified in three (1.6%) of 191, 17 (8.9%) of 191, and 21 (12%) of 175 patients, respectively. The favorable prognostic significance of N/F mutations was restricted to patients without RAS/PTEN abnormalities. These observations led us to propose a new T-ALL oncogenetic classifier defining low-risk patients as those with N/F mutation but no RAS/PTEN mutation (97 of 189 patients; 51%) and all other patients (49%; including 13% with N/F and RAS/PTEN mutations) as high-risk patients. In multivariable analysis, this oncogenetic classifier remained the only significant prognostic covariate (event-free survival: hazard ratio [HR], 3.2; 95% CI, 1.9 to 5.15; P < .001; and overall survival: HR, 3.2; 95% CI, 1.9 to 5.6; P < .001). Conclusion These data demonstrate that the presence of N/F mutations in the absence of RAS or PTEN abnormalities predicts good outcome in almost 50% of adult T-ALL. Conversely, the absence of N/F or presence of RAS/PTEN alterations identifies the remaining cohort of patients with poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.