Mesenchymal stem cells (MSCs) are considered as emergent "universal" cells and various tissue repair programs using MSCs are in development. In vitro expansion of MSCs is conventionally achieved in medium containing fetal calf serum (FCS) and is increased by addition of growth factors. However, for widespread clinical applications, contact of MSCs with FCS must be minimized since it is a putative source of prion or virus transmission. Therefore, because platelets are a natural source of growth factors, we sought to investigate in vitro MSC expansion in response to platelet lysates (PL) obtained from platelet-rich plasma. Human MSCs were expanded in FCS (+/-bFGF)- or PL-supplemented medium through a process of subculture. We demonstrated that PL-containing medium is enriched by growth factors (platelet-derived growth factors (PDGFs), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), insulin-like growth factor-1 (IGF-1) ...) and showed that PL is able to promote MSC expansion, to decrease the time required to reach confluence, and to increase CFU-F size, as compared to the FCS medium. Furthermore, we demonstrated that MSCs cultured in the presence of PL maintain their osteogenic, chondrogenic, and adipogenic differentiation properties and retain their immunosuppressive activity. Therefore, we propose that PL may be a powerful and safe substitute for FCS in development of tissue- and cellular-engineered products in clinical settings using MSCs.
IntroductionMesenchymal stromal cells (MSCs) are multipotent stem cells able to differentiate into mesoderm-derived cells, 1 and exhibit immunoregulatory properties. 2 MSCs have been used in the context of allogeneic hematopoietic stem cell transplantation to improve hematopoietic engraftment, to prevent graft failure, and to reduce the incidence or severity of acute graft-versus-host disease (GVHD). [3][4][5] MSCs obtained from bone marrow (BM) can undergo in vitro expansion in medium containing either fetal calf serum (FCS), with or without fibroblast growth factor (FGF-2), or platelet lysate (PL). 6 However, little is known about the effect of donor selection or culture conditions on the functional properties and therapeutic potential of clinical-grade MSCs.Recent studies have suggested that MSCs can contribute to tumor growth and metastasis. 7 A related concern is the capacity of MSCs for oncogenic transformation. Mouse MSCs show chromosomal abnormalities and are highly susceptible to transformation associated with an increased telomerase activity and myc expression, and a loss of p53 and p16. [8][9][10] In contrast, human MSCs are more resistant to transformation in vitro with no genomic instability detected and no tumor induced after long-term in vivo transfer. [11][12][13][14][15] After 20 to 50 population doublings (PDs), human MSCs undergo replicative senescence, with telomere shortening and increased p16 expression. 16 They require the same steps to achieve transformation as for differentiated cells, suggesting that they are not prone to spontaneous transformation. 17 Nevertheless, one recent study described the transformation of human adipose tissue-derived MSCs with up-regulation of myc, repression of p16, acquisition of telomerase activity, 18 and generation of carcinoma in mice. 19 We investigated the immune properties and resistance to transformation of MSCs produced in 4 cell therapy facilities during 2 multicenter clinical trials designed to evaluate the capacity of BM-MSCs to prevent acute GVHD or to treat irradiationinduced lesions. MethodsDetails regarding methods are provided in the supplemental data (available on the Blood website; see the Supplemental Materials link at the top of the online article). For personal use only. on March 28, 2019. by guest www.bloodjournal.org From (1A to 11A) were done for the GVHD prevention clinical trial, and 4 (12A, 13A2) to treat accidentally irradiated patients. For irradiated patients, 5 supplemental MSC productions (12B to 16B) were done using human PL. 6 MSC production Growth kinetics and MSC characterizationGrowth kinetics was assessed by studying total fold increase, total number of PDs, and colony-forming unit-fibroblast. MSCs were screened for the expression of CD45, CD73, CD105, CD90, and human leukocyte antigen-DR (HLA-DR) and were also checked for their capacity to stimulate the growth of allogeneic peripheral blood mononuclear cells (PBMCs) and to inhibit alloantigen-driven proliferation of PBMCs. Cytogenetic analysisAt the end of the first (P ...
Several reports have suggested that mesenchymal stem cells (MSCs) could exert a potent immunosuppressive effect in vitro, and thus may have a therapeutic potential for T cell-dependent pathologies. We aimed to establish whether MSCs could be used to control graft-vs-host disease (GVHD), a major cause of morbidity and mortality after allogeneic hemopoietic stem cell transplantation. From C57BL/6 and BALB/c mouse bone marrow cells, we purified and expanded MSCs characterized by the lack of expression of CD45 and CD11b molecules, their typical spindle-shaped morphology, together with their ability to differentiate into osteogenic, chondrogenic, and adipogenic cells. These MSCs suppressed alloantigen-induced T cell proliferation in vitro in a dose-dependent manner, independently of their MHC haplotype. However, when MSCs were added to a bone marrow transplant at a MSCs:T cells ratio that provided a strong inhibition of the allogeneic responses in vitro, they yielded no clinical benefit on the incidence or severity of GVHD. The absence of clinical effect was not due to MSC rejection because they still could be detected in grafted animals, but rather to an absence of suppressive effect on donor T cell division in vivo. Thus, in these murine models, experimental data do not support a significant immunosuppressive effect of MSCs in vivo for the treatment of GVHD.
The stromal cell-derived factor 1 (SDF-1) chemokine has various effects on hematopoietic cell functions. Its role in migration and homing of hematopoietic progenitors is currently well established. Previously it was shown that SDF-1 stimulates myeloid progenitor proliferation in synergy with cytokines. Results of this study indicate that SDF-1 alone promotes survival of purified CD34 ؉ cells from human unmobilized peripheral blood (PB) by counteracting apoptosis as demonstrated by its capacity to reduce DNA fragmentation, annexin-V ؉ cell number, and APO2.7 detection and to modulate bcl-2 homolog protein expression. The study demonstrates that SDF-1, pro-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.