Zhou et al. and Huang et al. have proposed the modified shift-splitting (MSS) preconditioner and the generalized modified shift-splitting (GMSS) for non-symmetric saddle point problems, respectively. They have used symmetric positive definite and skew-symmetric splitting of the (1, 1)-block in a saddle point problem. In this paper, we use positive definite and skew-symmetric splitting instead and present new modified shiftsplitting (NMSS) method for solving large sparse linear systems in saddle point form with a dominant positive definite part in (1, 1)-block. We investigate the convergence and semi-convergence properties of this method for nonsingular and singular saddle point problems. We also use the NMSS method as a preconditioner for GMRES method. The numerical results show that if the (1, 1)-block has a positive definite dominant part, the NMSS-preconditioned GMRES method can cause better performance results compared to other preconditioned GMRES methods such as GMSS, MSS, Uzawa-HSS and PU-STS. Meanwhile, the NMSS preconditioner is made for non-symmetric saddle point problems with symmetric and non-symmetric (1, 1)-blocks.
We generalize the accelerated Hermitian and skew-Hermitian splitting (AHSS) iteration methods for large sparse saddle-point problems. These methods involve four iteration parameters whose special choices can recover the preconditioned HSS and accelerated HSS iteration methods. Also a new efficient case is introduced and we theoretically prove that this new method converges to the unique solution of the saddle-point problem. Numerical experiments are used to further examine the effectiveness and robustness of iterations.
An iterative method for complex symmetric systems of linear equations is proposed. Estimates for the spectral radius of the method are obtained and sufficient convergence conditions are established. Numerical experiments show the efficiency of the method for linear systems with a dominant real part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.