n this chapter, we study the application of existing entity resolution (ER) techniques on a real-world multi-source genealogical dataset. Our goal is to identify all persons involved in various notary acts and link them to their birth, marriage, and death certificates. We analyze the influence of additional ER features, such as name popularity, geographical distance, and co-reference information on the overall ER performance. We study two prediction models: regression trees and logistic regression. In order to evaluate the performance of the applied algorithms and to obtain a training set for learning the models we developed an interactive interface for getting feedback from human experts. We perform an empirical evaluation on the manually annotated dataset in terms of precision, recall, and F-score. We show that using name popularity, geographical distance together with co-reference information helps to significantly improve ER results
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.