An improved hidden Markov model-based (HMMbased) speech enhancement system designed using the minimum mean square error principle is implemented and compared with a conventional spectral subtraction system. The improvements to the system are: 1) incorporation of mixture components in the HMM for noise in order to handle noise nonstationarity in a more flexible manner, 2) two efficient methods in the speech enhancement system design that make the system realtime implementable, and 3) an adaptation method to the noise type in order to accommodate a wide variety of noises expected under the enhancement system's operating environment. The results of the experiments designed to evaluate the performance of the HMM-based speech enhancement systems in comparison with spectral subtraction are reported. Three types of noise-white noise, simulated helicopter noise, and multitalker (cocktail party) noise-were used to corrupt the test speech signals. Both objective (global SNR) and subjective mean opinion score (MOS) evaluations demonstrate consistent superiority of the HMM-based enhancement systems that incorporate the innovations described in this paper over the conventional spectral subtraction method.
We present our work on end-to-end training of acoustic models using the lattice-free maximum mutual information (LF-MMI) objective function in the context of hidden Markov models. By end-to-end training, we mean flat-start training of a single DNN in one stage without using any previously trained models, forced alignments, or building state-tying decision trees. We use full biphones to enable context-dependent modeling without trees, and show that our end-to-end LF-MMI approach can achieve comparable results to regular LF-MMI on well-known large vocabulary tasks. We also compare with other end-to-end methods such as CTC in character-based and lexicon-free settings and show 5 to 25 percent relative reduction in word error rates on different large vocabulary tasks while using significantly smaller models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.