Abstract.Clustering is one of the most commonly techniques in Data Mining. Kmeans is one of the most popular clustering techniques due to its simplicity and efficiency. However, it is sensitive to initialization and easily trapped in local optima. K-harmonic means clustering solves the problem of initialization using a built-in boosting function, but it is suffering from running into local optima. Particle Swarm Optimization is a stochastic global optimization technique that is the proper solution to solve this problem. In this paper, PSOKHM not only helps KHM clustering escape from local optima but also overcomes the shortcoming of slow convergence speed of PSO. In this paper, a hybrid data clustering algorithm based on PSO and Genetic algorithm, GSOKHM, is proposed. We investigate local optima method in addition to the global optima in PSO, called LSOKHM. The experimental results on five real datasets indicate that LSOKHM is superior to the GSOKHM algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.