The availability of millimeter wave (mm-Wave) band in conjunction with massive multiple-input-multiple-output (MIMO) technology is expected to boost the data rates of the fifth-generation (5G) cellular systems. However, in order to achieve high spectral efficiencies, an accurate channel estimate is required, which is a challenging task in massive MIMO. By exploiting the small number of paths that characterize the mm-Wave channel, the estimation problem can be solved by compressed-sensing (CS) techniques. In this paper, we propose a novel CS channel estimation method based on the accelerated gradient descent with adaptive restart (AGDAR) algorithm exploiting a 1-norm approximation of the sparsity constraint. Moreover, a modified re-weighted compressed-sensing (RCS) technique is considered that iterates AGDAR using a weighted version of the 1-norm term, where weights are adapted at each iteration. We also discuss the impact of cell sectorization and tracking on the channel estimation algorithm. We compare the proposed solutions with existing channel estimations with an extensive simulation campaign on downlink third-generation partnership project (3GPP) channel models.
Beyond the scope of conventional metasurface, which necessitates plenty of computational resources and time, an inverse design approach using machine learning algorithms promises an effective way for metasurface design. In this paper, benefiting from Deep Neural Network (DNN), an inverse design procedure of a metasurface in an ultra-wide working frequency band is presented in which the output unit cell structure can be directly computed by a specified design target. To reach the highest working frequency for training the DNN, we consider 8 ring-shaped patterns to generate resonant notches at a wide range of working frequencies from 4 to 45 GHz. We propose two network architectures. In one architecture, we restrict the output of the DNN, so the network can only generate the metasurface structure from the input of 8 ring-shaped patterns. This approach drastically reduces the computational time, while keeping the network’s accuracy above 91%. We show that our model based on DNN can satisfactorily generate the output metasurface structure with an average accuracy of over 90% in both network architectures. Determination of the metasurface structure directly without time-consuming optimization procedures, an ultra-wide working frequency, and high average accuracy equip an inspiring platform for engineering projects without the need for complex electromagnetic theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.