Campylobacter jejuni is the leading cause of human gastroenteritis worldwide with over 500 million cases annually. Chemotaxis and motility have been identified as important virulence factors associated with C. jejuni colonisation. Group A transducer-like proteins (Tlps) are responsible for sensing the external environment for bacterial movement to or away from a chemical gradient or stimulus. In this study, we have demonstrated Cj1564 (Tlp3) to be a multi-ligand binding chemoreceptor and report direct evidence supporting the involvement of Cj1564 (Tlp3) in the chemotaxis signalling pathway via small molecule arrays, surface plasmon and nuclear magnetic resonance (SPR and NMR) as well as chemotaxis assays of wild type and isogenic mutant strains. A modified nutrient depleted chemotaxis assay was further used to determine positive or negative chemotaxis with specific ligands. Here we demonstrate the ability of Cj1564 to interact with the chemoattractants isoleucine, purine, malic acid and fumaric acid and chemorepellents lysine, glucosamine, succinic acid, arginine and thiamine. An isogenic mutant of cj1564 was shown to have altered phenotypic characteristics of C. jejuni, including loss of curvature in bacterial cell shape, reduced chemotactic motility and an increase in both autoagglutination and biofilm formation. We demonstrate Cj1564 to have a role in invasion as in in vitro assays the tlp3 isogenic mutant has a reduced ability to adhere and invade a cultured epithelial cell line; interestingly however, colonisation ability of avian caeca appears to be unaltered. Additionally, protein-protein interaction studies revealed signal transduction initiation through the scaffolding proteins CheV and CheW in the chemotaxis sensory pathway. This is the first report characterising Cj1564 as a multi-ligand receptor for C. jejuni, we therefore, propose to name this receptor CcmL, Campylobacter chemoreceptor for multiple ligands. In conclusion, this study identifies a novel multifunctional role for the C. jejuni CcmL chemoreceptor and illustrates its involvement in the chemotaxis pathway and subsequent survival of this organism in the host.
Background The detection of SARS-CoV-2 RNA by real-time polymerase chain reaction (PCR) in respiratory samples collected from persons recovered from COVID-19 does not necessarily indicate shedding of infective virions. By contrast, the isolation of SARS-CoV-2 using cell-based culture likely indicates infectivity, but there are limited data on the correlation between SARS-CoV-2 culture and PCR. Methods One hundred and ninety-five patients with varying severity of COVID-19 were tested (outpatients [n=178]), inpatients [n=12] and critically unwell patients admitted to the intensive care unit [ICU; n=5]). SARS-CoV-2 PCR positive samples were cultured in Vero C1008 cells and inspected daily for cytopathic effect (CPE). SARS-CoV-2-induced CPE was confirmed by PCR of culture supernatant. Where no CPE was observed, PCR was performed on day four to confirm absence of virus replication. Cycle threshold (Ct) of the day four PCR (Ctculture) and the PCR of the original clinical sample (Ctsample) were compared, and positive cultures were defined where Ctsample - Ctculture was ≥3. Findings Of 234 samples collected, 228 (97%) were from the upper respiratory tract. SARS-CoV-2 was only successfully isolated from samples with Ctsample ≤32, including in 28/181 (15%), 19/42 (45%) and 9/11 samples (82%) collected from outpatients, inpatients, and ICU patients, respectively. The mean duration from symptom onset to culture positivity was 4.5 days (range 0-18). SARS-CoV-2 was significantly more likely to be isolated from samples collected from inpatients (p<0∙001) and ICU patients (p<0∙0001) compared with outpatients respectively, and in samples with lower Ctsample. Conclusion SARS-CoV-2 culture may be used as a surrogate marker for infectivity and inform de-isolation protocols.
The SARS-CoV-2 epidemic has rapidly spread outside China with major outbreaks occurring in Italy, South Korea, and Iran. Phylogenetic analyses of whole-genome sequencing data identified a distinct SARS-CoV-2 clade linked to travellers returning from Iran to Australia and New Zealand. This study highlights potential viral diversity driving the epidemic in Iran, and underscores the power of rapid genome sequencing and public data sharing to improve the detection and management of emerging infectious diseases.
Background The detection of SARS-CoV-2 by real-time polymerase chain reaction (PCR) in respiratory samples collected from persons recovered from COVID-19 does not necessarily indicate shedding of infective virions. By contrast, the isolation of SARS-CoV-2 using cell-based culture likely indicates infectivity, but there are limited data on the correlation between SARS-CoV-2 culture and PCR. Here we review our experience using SARS-CoV-2 culture to determine infectivity and safe de-isolation of COVID-19 patients. Methods 195 patients with diverse severity of COVID-19 were tested (outpatients [n=178]), inpatients [n=12] and ICU [n=5]). SARS-CoV-2 PCR positive samples were cultured in Vero C1008 cells and inspected daily for cytopathic effect (CPE). SARS-CoV-2-induced CPE was confirmed by PCR of culture supernatant. Where no CPE was documented, PCR was performed on day four to confirm absence of virus replication. Cycle threshold (Ct) values of the day four PCR (Ctculture) and the PCR of the original clinical sample (Ctsample) were compared, and positive cultures were defined as a Ctsample - Ctculture value of greater than or equal to 3. Findings Of 234 samples collected, 228 (97%) were from the upper respiratory tract. SARS-CoV-2 was only successfully isolated from samples with Ctsample values <32, including in 28/181 (15%), 19/42 (45%) and 9/11 samples (82%) collected from outpatients, inpatients and ICU patients, respectively. The mean duration from symptom onset to culture positivity was 4.5 days (range 0-18 days). SARS-CoV-2 was significantly more likely to be isolated from samples collected from inpatients (p<0.001) and ICU patients (p<0001) compared with outpatients, and in samples with lower Ctsample values. Conclusion SARS-CoV-2 culture may be used as a surrogate marker for infectivity and inform de-isolation protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.