Generally, various traffic requirements in wireless sensor network are mostly dependent on specific application types, that is, eventdriven, continuous, and query-driven types. In these applications, real-time delivery is one of the important research challenges. However, due to harsh networking environment around a node, many researchers usually take different approach from conventional networks. In order to discuss and analyze the advantage or disadvantage of these approaches, some comprehensive survey literatures were published; however they are either out of date or compiled for communication protocols on single layer. Based on this deficiency, in this paper, we present the up-to-date research approaches and discuss the important features related to real-time communications in wireless sensor networks. As for grouping, we categorize the approaches into hard, soft, and firm real-time model. Furthermore, in all these categories, research has been focused on MAC and scheduling and routing according to research area or objective in second level. Finally, the article also suggests potential directions for future research in the field.
Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.