Although the clinical features of the Isocitrate dehydrogenase 2 (IDH2) mutation in acute myeloid leukemia (AML) have been characterized, its prognostic significance remains controversial and its stability has not been investigated. We analyzed 446 adults with primary non-M3 AML and found IDH2 R172, R140 and IDH1 R132 mutations occurred at a frequency of 2.9, 9.2 and 6.1%, respectively. Compared with wild-type IDH2, mutation of IDH2 was associated with higher platelet counts, intermediate-risk or normal karyotype and isolated þ 8, but was inversely correlated with expression of HLA-DR, CD34, CD15, CD7 and CD56, and was mutually exclusive with WT1 mutation and chromosomal translocations involving core-binding factors. All these correlations became stronger when IDH1 and IDH2 mutations were considered together. Multivariate analysis revealed IDH2 mutation as an independent favorable prognostic factor. IDH2 À /FLT3-ITD þ genotype conferred especially negative impact on survival. Compared with IDH2 R140 mutation, IDH2 R172 mutation was associated with younger age, lower white blood cell count and lactate dehydrogenase level, and was mutually exclusive with NPM1 mutation. Serial analyses of IDH2 mutations at both diagnosis and relapse in 121 patients confirmed high stability of IDH2 mutations. In conclusion, IDH2 mutation is a stable marker during disease evolution and confers favorable prognosis.
The TP53 mutation is frequently detected in acute myeloid leukemia (AML) patients with complex karyotype (CK), but the stability of this mutation during the clinical course remains unclear. In this study, TP53 mutations were identified in 7% of 500 patients with de novo AML and 58.8% of patients with CK. TP53 mutations were closely associated with older age, lower white blood cell (WBC) and platelet counts, FAB M6 subtype, unfavorable-risk cytogenetics and CK, but negatively associated with NPM1 mutation, FLT3/ITD and DNMT3A mutation. Multivariate analysis demonstrated that TP53 mutation was an independent poor prognostic factor for overall survival and disease-free survival among the total cohort and the subgroup of patients with CK. A scoring system incorporating TP53 mutation and nine other prognostic factors, including age, WBC counts, cytogenetics and gene mutations, into survival analysis proved to be very useful to stratify AML patients. Sequential study of 420 samples showed that TP53 mutations were stable during AML evolution, whereas the mutation was acquired only in 1 of the 126 TP53 wild-type patients when therapy-related AML originated from different clone emerged. In conclusion, TP53 mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression.
A number of patient-specific and leukemia-associated factors are related to the poor outcome in older patients with acute myeloid leukemia (AML). However, comprehensive studies regarding the impact of genetic alterations in this group of patients are limited. In this study, we compared relevant mutations in 21 genes between AML patients aged 60 years or older and those younger and exposed their prognostic implications. Compared with the younger patients, the elderly had significantly higher incidences of PTPN11, NPM1, RUNX1, ASXL1, TET2, DNMT3A and TP53 mutations but a lower frequency of WT1 mutations. The older patients more frequently harbored one or more adverse genetic alterations. Multivariate analysis showed that DNMT3A and TP53 mutations were independent poor prognostic factors among the elderly, while NPM1 mutation in the absence of FLT3/ITD was an independent favorable prognostic factor. Furthermore, the status of mutations could well stratify older patients with intermediate-risk cytogenetics into three risk groups. In conclusion, older AML patients showed distinct genetic alterations from the younger group. Integration of cytogenetics and molecular mutations can better risk-stratify older AML patients. Development of novel therapies is needed to improve the outcome of older patients with poor prognosis under current treatment modalities.
Conventionally, acute myeloid leukemia (AML) patients are categorized into good-, intermediate- and poor-risk groups according to cytogenetic changes. However, patients with intermediate-risk cytogenetics represent a largely heterogeneous population regarding treatment response and clinical outcome. In this study, we integrated cytogenetics and molecular mutations in the analysis of 318 patients with de novo non-M3 AML who received standard chemotherapy. According to the mutation status of eight genes, including NPM1, CEBPA, IDH2, RUNX1, WT1, ASXL1, DNMT3A and FLT3, that had prognostic significance, 229 patients with intermediate-risk cytogenetics could be refinedly stratified into three groups with distinct prognosis (P<0.001); patients with good-risk genotypes had a favorable outcome (overall survival, OS, not reached) similar to those with good-risk cytogenetics, whereas those with poor-risk genotypes had an unfavorable prognosis (OS, 10 months) similar to those with poor-risk cytogenetics (OS, 13.5 months), and the remaining patients with other genotypes had an intermediate outcome (OS, 25 months). Integration of cytogenetic and molecular profiling could thus reduce the number of intermediate-risk AML patients from around three-fourth to one-fourth. In conclusion, integration of cytogenetic and molecular changes improves the prognostic stratification of AML patients, especially those with intermediate-risk cytogenetics, and may lead to better decision on therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.