Background Resistance to chemotherapeutic drugs is a key factor for cancer recurrence and metastases in head and neck cancer (HNC). Cancer stem cells (CSCs) in tumors have self-renewal, differentiation, and higher drug resistance capabilities, resulting in a poor prognosis for patients. In glucose metabolism, pyruvate dehydrogenase kinase (PDK) inhibits pyruvate dehydrogenase and impedes pyruvate from being metabolized into acetyl-CoA and entering the tricarboxylic acid cycle to generate energy. Studies have reported that PDK1 and PDK2 inhibition suppresses the growth, motility, and drug resistance of cancer cells. Furthermore, while TGFβ1 levels are persistently elevated in HNC patients with poor prognosis, the role of PDK isoforms in the TGFβ1-promoted progression and stem-like properties of HNC is unclear. Methods Levels of PDK1 and PDK2 were evaluated in HNC tissue microarrays by immunohistochemistry to explore potential clinical relevance. PDK1 and PDK2 were knocked down by the lentivirus shRNA system to investigate their role in TGFβ1-promoted tumor progression in vitro. Results We found that PDK2 levels were increased in the later stage of HNC tissues compared to constant PDK1 expression. After PDK1 and PDK2 knockdown, we discovered increased ATP production and decreased lactate production in TGFβ1-treated and untreated HNC cells. However, only PDK2 silencing significantly inhibited the clonogenic ability of HNC cells. We subsequently found that TGFβ1-promoted migration and invasion capabilities were decreased in PDK1 and PDK2 knockdown cells. The tumor spheroid-forming capability, motility, CSC genes, and multidrug-resistant genes were downregulated in PDK1 and PDK2 silencing CSCs. PDK1 and PDK2 inhibition reversed cisplatin and gemcitabine resistance of CSCs, but not paclitaxel resistance. Conclusion The results demonstrated that the PDK1- and PDK2-mediated Warburg effect contributes to the TGFβ1-enhanced stemness properties of HNC. Therefore, PDK1 and PDK2 may serve as molecular targets for the combination therapy of HNC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.