Background: Splenic injury is the most common solid visceral injury in blunt abdominal trauma, and high-resolution abdominal computed tomography (CT) can adequately detect the injury. However, these lethal injuries sometimes have been overlooked in current practice. Deep learning (DL) algorithms have proven their capabilities in detecting abnormal findings in medical images. The aim of this study is to develop a three-dimensional, weakly supervised DL algorithm for detecting splenic injury on abdominal CT using a sequential localization and classification approach. Material and methods: The dataset was collected in a tertiary trauma center on 600 patients who underwent abdominal CT between 2008 and 2018, half of whom had splenic injuries. The images were split into development and test datasets at a 4 : 1 ratio. A two-step DL algorithm, including localization and classification models, was constructed to identify the splenic injury. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Grad-CAM (Gradient-weighted Class Activation Mapping) heatmaps from the test set were visually assessed. To validate the algorithm, we also collected images from another hospital to serve as external validation data. Results: A total of 480 patients, 50% of whom had spleen injuries, were included in the development dataset, and the rest were included in the test dataset. All patients underwent contrast-enhanced abdominal CT in the emergency room. The automatic two-step EfficientNet model detected splenic injury with an AUROC of 0.901 (95% CI: 0.836–0.953). At the maximum Youden index, the accuracy, sensitivity, specificity, PPV, and NPV were 0.88, 0.81, 0.92, 0.91, and 0.83, respectively. The heatmap identified 96.3% of splenic injury sites in true positive cases. The algorithm achieved a sensitivity of 0.92 for detecting trauma in the external validation cohort, with an acceptable accuracy of 0.80. Conclusions: The DL model can identify splenic injury on CT, and further application in trauma scenarios is possible.
Objective: To identify the feasibility and efficiency of deep convolutional neural networks (DCNNs) in the detection of ankle fractures and to explore ensemble strategies that applied multiple projections of radiographs. Ankle radiographs (AXRs) are the primary tool used to diagnose ankle fractures. Applying DCNN algorithms on AXRs can potentially improve the diagnostic accuracy and efficiency of detecting ankle fractures. Methods: A DCNN was trained using a trauma image registry, including 3102 AXRs. We separately trained the DCNN on anteroposterior (AP) and lateral (Lat) AXRs. Different ensemble methods, such as “sum-up,” “severance-OR,” and “severance-Both,” were evaluated to incorporate the results of the model using different projections of view. Results: The AP/Lat model’s individual sensitivity, specificity, positive-predictive value, accuracy, and F1 score were 79%/84%, 90%/86%, 88%/86%, 83%/85%, and 0.816/0.850, respectively. Furthermore, the area under the receiver operating characteristic curve (AUROC) of the AP/Lat model was 0.890/0.894 (95% CI: 0.826–0.954/0.831–0.953). The sum-up method generated balanced results by applying both models and obtained an AUROC of 0.917 (95% CI: 0.863–0.972) with 87% accuracy. The severance-OR method resulted in a better sensitivity of 90%, and the severance-Both method obtained a high specificity of 94%. Conclusion: Ankle fracture in the AXR could be identified by the trained DCNN algorithm. The selection of ensemble methods can depend on the clinical situation which might help clinicians detect ankle fractures efficiently without interrupting the current clinical pathway. Advances in knowledge: This study demonstrated different ensemble strategies of AI algorithms on multiple view AXRs to optimize the performance in various clinical needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.