We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films -Bi 2 Se 3 and (Bi,Sb) 2 Te 3 -deposited by molecular beam epitaxy on Y 3 Fe 5 O 12 thin films. By systematically varying the Bi 2 Se 3 film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse RashbaEdelstein effect length (λ IREE ), increases dramatically as the film thickness is increased from 2 quintuple layers, saturating above 6 quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological insulator/ferromagnet heterostructures.Our conclusion is further corroborated by studying a series of Y 3 Fe 5 O 12 /(Bi,Sb) 2 Te 3 heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse RashbaEdelstein signals to determine the effective interfacial spin mixing conductance and λ IREE .
Strong damping enhancement in nm-thick yttrium iron garnet (YIG) films due to Pt capping layers was observed. This damping is substantially larger than the expected damping due to conventional spin pumping, is accompanied by a shift in the ferromagnetic resonance field, and can be suppressed by the use of a Cu spacer in between the YIG and Pt films. The data indicate that such damping may originate from the ferromagnetic ordering in Pt atomic layers near the YIG/Pt interface and the dynamic exchange coupling between the ordered Pt spins and the spins in the YIG film.
Recent years have witnessed a rapidly growing interest in exploring the use of spin waves for information transmission and computation toward establishing a spin-wave-based technology that is not only significantly more energy efficient than the CMOS technology, but may also cause a major departure from the von-Neumann architecture by enabling memory-in-logic and logic-in-memory architectures. A major bottleneck of advancing this technology is the excitation of spin waves with short wavelengths, which is a must because the wavelength dictates device scalability. Here, we report the discovery of an approach for the excitation of nm-wavelength spin waves. The demonstration uses ferromagnetic nanowires grown on a 20-nm-thick Y3Fe5O12 film strip. The propagation of spin waves with a wavelength down to 50 nm over a distance of 60,000 nm is measured. The measurements yield a spin-wave group velocity as high as 2600 m s−1, which is faster than both domain wall and skyrmion motions.
Growth of nm-thick yttrium iron garnet films and ferromagnetic resonance (FMR) linewidth properties in the films are reported. The films were grown on gadolinium gallium garnet substrates by pulsed laser deposition (PLD). Films in the 5–35 nm thickness range showed a (111) orientation and a surface roughness between 0.1 and 0.3 nm. The 10 nm films showed a 10 GHz FMR linewidth of about 6 Oe and a damping constant of 3.2 × 10−4. The FMR linewidth increases with both the surface roughness and the surface Fe deficiency. Thicker films exhibit a smaller FMR linewidth and a lower damping constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.