In recent years, a great interest has been observed in the development and use of new materials in microwave technology. Particularly, a special interest has been observed in the use of superconducting materials in microwave integrated circuits, this is due to their main characteristics. In this paper, the complex resonant frequency problem of a superconductor patch over Ground Plane with Rectangular Aperture is formulated in terms of an integral equation, the kernel of which is the dyadic Green’s function. Galerkin’s procedure is used in the resolution of the electric field integral equation. The surface impedance of the superconductor film is modeled using the two fluids model of Gorter and Casimir. Numerical results concerning the effect of the thickness of the superconductor patch on the characteristics of the antenna are presented.
In the present work, a precise optimization method is proposed for tuning the parameters of the COST231 model to improve its accuracy in the path loss propagation prediction. The Particle Swarm Optimization is used to tune the model parameters. The predictions of the tuned model are compared with the most popular models. The performance criteria selected for the comparison of various empirical path loss models is the Root Mean Square Error (RMSE). The RMSE between the actual and predicted data are calculated for various path loss models. It turned out that the tuned COST 231 model outperforms the other studied models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.