Discovering frequent Itemsets is an interesting problem in the context of parallel and distributed databases. Computation cost and communication/synchronization overhead are important elements in distributed Frequent Itemsets. In this work, we propose an efficient algorithm for mining distributed frequent Itemsets (MDFI) which can significantly reduce the number of candidates Itemsets and communication costs by adopting a Master/Slaves scheme of communication. We present performance comparisons for our algorithm against Apriori and FP-growth algorithms using two datasets with different minimum support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.