Meiotic chromosomes endure rapid prophase movements that ease the formation of interhomologue recombination intermediates that drive synapsis, crossing over, and segregation process. To generate these fast moves, the meiotic telomere complex (MTC) enables telomere-inner nuclear membrane attachment during meiotic prophase I and transfers cytoskeletal signals via another complex: the LINC complex. Furthermore, disruption or mutations of any of the MTC genes (TERB1, TERB2, and MAJIN) alters telomere association with the nuclear envelope leading to impairment of homologous pairing and synapsis, a meiotic arrest, and consequently to male infertility. To decipher the effect of TERB1, TERB2, and MAJIN missense mutations on protein structure, stability, and function, different bioinformatic tools were used in this study including VEP, Mutabind2, Haddock, Prodigy, Ligplot, ConSurf, DUET and MusiteDeep. In total, thirty mutations were predicted to be deleterious using VEP web server: seventeen for TERB1, eleven for TERB2, and two for MAJIN. All these single nucleotide polymorphisms were further analyzed and only 11 SNPs (W8R, G25R, P649A, I624T, C618R, F607V, S604G, C592Y, C592R, G187W, and R53C) were found to be the most damaging by at least six software tools and exert deleterious effect on the TERB1, TERB2, and MAJIN protein structures and likely functions. They revealed high conservation, less stability, and having a role in posttranslational modifications. This in silico approach provides information to gain further insights about variants that might affect stability, change binding affinity, and edit protein-protein interactions to facilitate their identification and functional characterization associated with male infertility.