More recurrent heat waves and extreme ozone (O3) episodes are likely to occur during the next decades and a key question is about the concurrence of those hazards, the atmospheric patterns behind their appearance, and their joint effect on human health. In this work, we use surface maximum temperature and O3 observations during extended summers in two cities from Morocco: Casablanca and Marrakech, between 2010 and 2019. We assess the connection between these data and climate indices (North Atlantic Oscillation (NAO), Mediterranean Oscillation (MO), and Saharan Oscillation (SaO)). We then identify concurrent heat waves and O3 episodes, the weather type behind this concurrence, and the combined health risks. Our findings show that the concurrence of heat waves and O3 episodes depends both on the specific city and the large-scale atmospheric circulation. The likely identified synoptic pattern is when the country is under the combined influence of an anticyclonic area in the north and the Saharan trough extending the depression centered in the south. This pattern generates a warm flow and may foster photochemical pollution. Our study is the first step toward the establishment of an alert system. It will help to provide recommendations for coping with concurrent heat waves and air pollution episodes.
Temperature is the first meteorological factor to be directly involved in leading ozone (O3) extreme events. Generally, upward temperatures increase the probability of having exceedance in ozone adopted thresholds. In the global climate change context more frequent and/or persistent heat waves and extreme ozone (O3) episodes are likely to occur during in coming decades and a key question is about the coincidence and co-occurrence of these extremes. In this paper, using 7 years of surface temperature and air quality observations over two cities from Morocco (Casablanca and Marrakech) and implementing a percentile thresholding approach, we show that the extremes in temperature and ozone (O3) cluster together in many cases and that the outbreak of ozone events generally match the first or second days of heat waves. This co-occurrence of extreme episodes is highly impacted by humidity and may be overlapping large-scale episodes.
The aim of this study was to investigate the relationship between meteorological parameters, air quality and daily COVID-19 transmission in Morocco. We collected daily data of confirmed COVID-19 cases in the Casablanca region, as well as meteorological parameters (average temperature, wind, relative humidity, precipitation, duration of insolation) and air quality parameters (CO, NO2, 03, SO2, PM10) during the period of 2 March 2020, to 31 December 2020. The General Additive Model (GAM) was used to assess the impact of these parameters on daily cases of COVID-19. A total of 172,746 confirmed cases were reported in the study period. Positive associations were observed between COVID-19 and wind above 20 m/s and humidity above 80%. However, temperatures above 25° were negatively associated with daily cases of COVID-19. PM10 and O3 had a positive effect on the increase in the number of daily confirmed COVID-19 cases, while precipitation had a borderline effect below 25 mm and a negative effect above this value. The findings in this study suggest that significant associations exist between meteorological factors, air quality pollution (PM10) and the transmission of COVID-19. Our findings may help public health authorities better control the spread of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.