Leprosy: Ancient and Modern In medieval Europe, leprosy was greatly feared: Sufferers had to wear bells and were shunned and kept isolated from society. Although leprosy largely disappeared from Europe in the 16th century, elsewhere in the world almost a quarter of a million cases are still reported annually, despite the availability of effective drugs. Schuenemann et al. (p. 179 , published online 13 June; see the 14 June News story by Gibbons , p. 1278 ) probed the origins of leprosy bacilli by using a genomic capture-based approach on DNA obtained from skeletal remains from the 10th to 14th centuries. Because the unique mycolic acids of this mycobacterium protect its DNA, for one Danish sample over 100-fold, coverage of the genome was possible. Sequencing suggests a link between the middle-eastern and medieval European strains, which falls in line with social historical expectations that the returning expeditionary forces of antiquity originally spread the pathogen. Subsequently, Europeans took the bacterium westward to the Americas. Overall, ancient and modern strains remain remarkably similar, with no apparent loss of virulence genes, indicating it was most probably improvements in social conditions that led to leprosy's demise in Europe.
Tracing the evolution of ancient diseases depends on the availability and accessibility of suitable biomarkers in archaeological specimens. DNA is potentially information-rich but it depends on a favourable environment for preservation. In the case of the major mycobacterial pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, robust lipid biomarkers are established as alternatives or complements to DNA analyses. A DNA report, a decade ago, suggested that a 17,000-year-old skeleton of extinct Bison antiquus, from Natural Trap Cave, Wyoming, was the oldest known case of tuberculosis. In the current study, key mycobacterial lipid virulence factor biomarkers were detected in the same two samples from this bison. Fluorescence high-performance liquid chromatography (HPLC) indicated the presence of mycolic acids of the mycobacterial type, but they were degraded and could not be precisely correlated with tuberculosis. However, pristine profiles of C29, C30 and C32 mycocerosates and C27 mycolipenates, typical of the Mycobacterium tuberculosis complex, were recorded by negative ion chemical ionization gas chromatography mass spectrometry of pentafluorobenzyl ester derivatives. These findings were supported by the detection of C34 and C36 phthiocerols, which are usually esterified to the mycocerosates. The existence of Pleistocene tuberculosis in the Americas is confirmed and there are many even older animal bones with well-characterised tuberculous lesions similar to those on the analysed sample. In the absence of any evidence of tuberculosis in human skeletons older than 9,000 years BP, the hypothesis that this disease evolved as a zoonosis, before transfer to humans, is given detailed consideration and discussion.
The evolution of tubercle bacilli parallels a route from environmental Mycobacterium kansasii, through intermediate “Mycobacterium canettii”, to the modern Mycobacterium tuberculosis complex. Cell envelope outer membrane lipids change systematically from hydrophilic lipooligosaccharides and phenolic glycolipids to hydrophobic phthiocerol dimycocerosates, di- and pentaacyl trehaloses and sulfoglycolipids. Such lipid changes point to a hydrophobic phenotype for M. tuberculosis sensu stricto. Using Congo Red staining and hexadecane-aqueous buffer partitioning, the hydrophobicity of rough morphology M. tuberculosis and Mycobacterium bovis strains was greater than smooth “M. canettii” and M. kansasii. Killed mycobacteria maintained differential hydrophobicity but defatted cells were similar, indicating that outer membrane lipids govern overall hydrophobicity. A rough M. tuberculosis H37Rv ΔpapA1 sulfoglycolipid-deficient mutant had significantly diminished Congo Red uptake though hexadecane-aqueous buffer partitioning was similar to H37Rv. An M. kansasii, ΔMKAN27435 partially lipooligosaccharide-deficient mutant absorbed marginally more Congo Red dye than the parent strain but was comparable in partition experiments. In evolving from ancestral mycobacteria, related to “M. canettii” and M. kansasii, modern M. tuberculosis probably became more hydrophobic by increasing the proportion of less polar lipids in the outer membrane. Importantly, such a change would enhance the capability for aerosol transmission, affecting virulence and pathogenicity.
Nine burials excavated from the Magdalen Hill Archaeological Research Project (MHARP) in Winchester, UK, showing skeletal signs of lepromatous leprosy (LL) have been studied using a multidisciplinary approach including osteological, geochemical and biomolecular techniques. DNA from Mycobacterium leprae was amplified from all nine skeletons but not from control skeletons devoid of indicative pathology. In several specimens we corroborated the identification of M. leprae with detection of mycolic acids specific to the cell wall of M. leprae and persistent in the skeletal samples. In five cases, the preservation of the material allowed detailed genotyping using single-nucleotide polymorphism (SNP) and multiple locus variable number tandem repeat analysis (MLVA). Three of the five cases proved to be infected with SNP type 3I-1, ancestral to contemporary M. leprae isolates found in southern states of America and likely carried by European migrants. From the remaining two burials we identified, for the first time in the British Isles, the occurrence of SNP type 2F. Stable isotope analysis conducted on tooth enamel taken from two of the type 3I-1 and one of the type 2F remains revealed that all three individuals had probably spent their formative years in the Winchester area. Previously, type 2F has been implicated as the precursor strain that migrated from the Middle East to India and South-East Asia, subsequently evolving to type 1 strains. Thus we show that type 2F had also spread westwards to Britain by the early medieval period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.