В 2019 г. Ван и Ху, используя мартингальный метод, для случайных величин с $\rho$-перемешиванием установили неравенства Берри-Эссеена со скоростью нормальной аппроксимации $O(n^{-1/6}\log n)$, где $\log x=\ln\max\{x,e\}$. В настоящей статье мы устанавливаем некоторые общие результаты о скорости нормальной аппроксимации, которые включают соответствующие результаты Вана-Ху 2019 г. При некоторых подходящих условиях скорость может достигать $O(n^{-1/5})$ или $O(n^{-1/4}\log^{1/2} n)$. В качестве применения мы получаем неравенства Берри-Эссеена для выборочных квантилей, построенных по случайным выборкам с $\rho$-перемешиванием. Наконец, мы приводим результаты численного моделирования, чтобы продемонстрировать на конечных выборках эффективность теоретического результата.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.