Tibial dyschodroplasia (TD) is a most common pathological condition in many avian species that is characterized by failure of growth plate (GP) modeling that leads to the persistence of avascular lesion in the GP. Tetramethylpyrazine (TMP) is widely used to treat neurovascular disorders and pulmonary hypertension, but no report is available about promoting effect of TMP against TD. Therefore, a total of 210 broiler chicks were equally divided into three groups; Control, TD and TMP. During the experiment mortality rate, chicken performance indicators (daily weight, average daily feed intake, average daily weight gain and feed conversion ratio), tibia bone indicators (weight, length, width of tibial and the size of GP) in addition to gene expression of HIF-1α and VEGF were examined. The results showed that TMP administration restore the GP width, increase growth performance, and mitigated the lameness in broiler chickens. The expression of HIF-1α and VEGF increased significantly in TD affected thiram induced chicks. Whereas, TMP treatment down-regulated HIF-1α and VEGF genes and proteins expressions. The present study demonstrates that the TMP plays an important role in angiogenesis during the impairment and recovery of GP in TD via regulation of the HIF-1α/VEGF signaling pathway in chickens.
Tibial dyschondroplasia (TD) is an intractable poultry problem that is characterized by the appearance of non-vascularized and non-mineralized cartilage masses in tibial growth plates (TGPs). However, the role of angiogenesis inhibition in the occurrence of TD remains unknown. In this study, we found that, compared to low-altitude Arbor Acres chickens (AACs), high-altitude Tibetan chickens showed higher tibial vascular distributions that were accompanied by up-regulation of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor A (VEGFA) and VEGF receptors. These observations provide insights into hypoxia-induced angiogenesis, which may be related to the absence of TD in high-altitude native Tibetan chickens. Importantly, hypoxia experiments also showed that during hypoxia, tibial angiogenesis was enhanced, which was due to pro-angiogenic factor up-regulation (including VEGFA, VEGFR1, VEGFR2, and IL-8), in AACs. Moreover, we observed that thiram-induced TD could strongly inhibit tibial angiogenesis in the hypertrophic zone through coordinated down-regulation of HIF-1α and pro-angiogenic factors, leading to a disruption in the blood supply to the TGP. Taken together, these findings reveal that the occurrence of TD is highly associated with inhibition of tibial angiogenesis through down-regulated expression of HIF-1α, VEGFA and VEGF receptors, which results in suppression of TGP development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.