This paper employs machine learning algorithms to detect tax evasion and analyzes tax data. With the development of commercial businesses, traditional algorithms are not appropriate for solving the tax evasion detection problem. Hence, other algorithms with acceptable speed, precision, analysis, and data decisions must be used. In the case of assets and tax assessment, the integration of machine learning models with meta-heuristic algorithms increases accuracy due to optimal parameters. In this paper, intelligent machine learning algorithms are used to solve tax evasion detection. This research uses an improved particle swarm optimization (IPSO) algorithm to improve the multilayer perceptron neural network by finding the optimal weight and improving support vector machine (SVM) classifiers with optimal parameters. The IPSO-MLP and IPSO-SVM models using the IPSO algorithm are used as new models for tax evasion detection. Our proposed system applies the dataset collected from the general administration of tax affairs of West Azerbaijan province of Iran with 1500 samples for the tax evasion detection problem. The evaluations show that the IPSO-MLP model has a higher accuracy rate than the IPSO-SVM model and logistic regression. Moreover, the IPSO-MLP model has higher accuracy than SVM, Naive Bayes, k-nearest neighbor, C5.0 decision tree, and AdaBoost. The accuracy of IPSO-MLP and IPSO-SVM models is 93.68% and 92.24%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.