Core collapse of dense massive star clusters is unavoidable and this leads to the formation of massive objects, with a mass up to 1000 M ⊙ and even larger. When these objects become stars, stellar wind mass loss determines their evolution and final fate, and decides upon whether they form black holes (with normal mass or with intermediate mass) or explode as a pair instability supernova. In the present paper, we discuss the evolution of very massive stars and we present a convenient evolution recipe that can be implemented in a gravitational N-body code to study the dynamics of dense massive clusters.
We discuss differences between massive single star and massive close binary population number synthesis predictions of WR stars. We show that the WC/WN number ratio as function of metallicity depends significantly on whether or not binaries are included. Furthermore, the observed WC(+OB)/WN(+OB) number ratio in the Solar neighborhood seems to indicate that the WR mass loss rates are lower by another factor two compared to recently proposed clumping corrected formalisms. We then demonstrate that the observed lower luminosity distribution of single WN stars can be explained in a satisfactory way by massive single star evolutionary computations where the red supergiant phase is calculated using a stellar wind mass loss rate formalism that is based on recent observations.
In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics.1. The formation and the evolution of very massive stars (with masses >120 M ) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collisions of the 10-20 most massive stars in the cluster (this process is known as 'runaway merging'). The further evolution is governed by stellar wind mass loss during core hydrogen and core helium burning (the WR phase of very massive stars). Our simulations reveal that, as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed, but with a maximum mass ≈70 M . In low-metallicity clusters, however, it cannot be excluded that the runaway-merging process is responsible for pair-instability supernovae or for the formation of intermediate-mass black holes with a mass of several 100 M . 2. Massive runaways can be formed via the supernova explosion of one of the components in a binary system (the Blaauw scenario), or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g. ζ Pup, λ Cep, BD + 43°3654) are the product of the collision and merger of two or three massive stars.
Abstract. In this paper we investigate the effects of binaries having an initial period between 1 day and 10 years on the theoretical simulation of the evolution of UV spectral features in massive starbursts. The binary evolutionary processes that dominate the evolution of the considered spectral features are the Roche lobe overflow in Case Br systems, the mass transfer rate and the merger rate. They cause UV spectral rejuvenation in starbursts that are older than 5 Myr.
We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computa-tional efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a "Noah's Ark" milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multi-scale and multi-physics systems in which the time-and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe three examples calculated using MUSE: the merger of two galaxies, the merger of two evolving stars, and a hybrid N -body simulation. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.