In April 2008, a nucleotide sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cut-off values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. A Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate, and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 50 new genotypes: as of January 2011, new genotypes for VP7 (G20–G26), VP4 (P[28]–P[35]), VP6 (I12–I16), VP1 (R5–R9), VP2 (C6–C9), VP3 (M7–M8), NSP1 (A15–A16), NSP2 (N6–N9), NSP3 (T8–T12), NSP4 (E12–E14), and NSP5/6 (H7–H11) have been defined for RV strains identified in humans, cows, pigs, horses, mice, South American camelids (guanaco and vicuña), chickens, turkeys, pheasants, and bats. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including but not limited to, the individual gene genotypes, epidemiological, and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.
Recently, a classification system was proposed for rotaviruses in which all the 11 genomic RNA segments are used (Matthijnssens et al., 2008; J. Virol. 82:3204-3219). Based on nucleotide identity cut-off percentages, different genotypes were defined for each genome segment. A nomenclature for the comparison of complete rotavirus genomes was considered in which the notations Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx are used for the VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 encoding genes, respectively. This classification system is an extension of the previously applied, genotype-based system which made use of the rotavirus gene segments encoding VP4, VP7, VP6, and NSP4. In order to assign rotavirus strains to one of the established genotypes or a new genotype, a standard procedure is proposed in this report. As more human and animal rotavirus genomes will be completely sequenced, new genotypes for each of the eleven gene segments may be identified. A Rotavirus Classification Working Group (RCWG) including specialists in molecular virology, infectious diseases, epidemiology, and public health was formed, which can assist in the appropriate delineation of new genotypes, thus avoiding duplications and helping minimize errors. Scientists discovering a potentially new rotavirus genotype for any of the 11 gene segments are invited to send the novel sequence to the RCWG, where the sequence will be analyzed, and a new nomenclature will be advised as appropriate. The RCWG will update the list of classified strains regularly and make this accessible on a website. Close collaboration with the Study Group Reoviridae of the International Committee on the Taxonomy of Viruses will be maintained.
Flavivirus-related sequences have been discovered in the dsDNA genome of Aedes albopictus and Aedes aegypti mosquitoes, demonstrating for the first time an integration into a eukaryotic genome of a multigenic sequence from an RNA virus that replicates without a recognized DNA intermediate. In the Aedes albopictus C6/36 cell line, an open reading frame (ORF) of 1557 aa with protease/helicase and polyprotein processing domains characteristic of flaviviruses was identified. It is closely related to NS1-NS4A genes of the Cell Fusing Agent and Kamiti River virus and the corresponding mRNAs were detected. Integrated sequences homologous to the envelope, NS4B and polymerase genes of flaviviruses were identified. Overall, approximately two-thirds of a flavivirus-like genome were characterized. In the Aedes aegypti A20 cell line, a 492 aa ORF related to the polymerase of the Cell Fusing Agent and Kamiti River virus was identified. These flavivirus-related integrated DNA sequences were detected in laboratory-bred and wild Aedes albopictus and Aedes aegypti mosquitoes, demonstrating that their discovery is not an artefact resulting from the manipulation of mosquito cell lines, since they exist under natural conditions. This finding has major implications regarding evolution, as it represents an entirely different mechanism by which genetic diversity may be generated in eukaryotic cells distinct from accepted processes.
Several human diseases in Europe are caused by viruses transmitted by tick bite. These viruses belong to the genus Flavivirus, and include tick-borne encephalitis virus, Omsk haemorrhagic fever virus, louping ill virus, Powassan virus, Nairovirus (Crimean-Congo haemorrhagic fever virus) and Coltivirus (Eyach virus). All of these viruses cause more or less severe neurological diseases, and some are also responsible for haemorrhagic fever. The epidemiology, clinical picture and methods for diagnosis are detailed in this review. Most of these viral pathogens are classified as Biosafety Level 3 or 4 agents, and therefore some of them have been classified in Categories A-C of potential bioterrorism agents by the Centers for Disease Control and Prevention. Their ability to cause severe disease in man means that these viruses, as well as any clinical samples suspected of containing them, must be handled with specific and stringent precautions.
The outer capsid protein VP2 of Bluetongue virus (BTV) is a target for the protective immune response generated by the mammalian host. VP2 contains the majority of epitopes that are recognized by neutralizing antibodies and is therefore also the primary determinant of BTV serotype. Full-length cDNA copies of genome segment 2 (Seg-2, which encodes VP2) from the reference strains of each of the 24 BTV serotypes were synthesized, cloned and sequenced. This represents the first complete set of full-length BTV VP2 genes (from the 24 serotypes) that has been analysed. Each Seg-2 has a single open reading frame, with short inverted repeats adjacent to conserved terminal hexanucleotide sequences. These data demonstrated overall inter-serotype variations in Seg-2 of 29 % (BTV-8 and BTV-18) to 59 % (BTV-16 and BTV-22), while the deduced amino acid sequence of VP2 varied from 22.4 % (BTV-4 and BTV-20) to 73 % (BTV-6 and BTV-22). Ten distinct Seg-2 lineages (nucleotypes) were detected, with greatest sequence similarities between those serotypes that had previously been reported as serologically 'related'. Fewer similarities were observed between different serotypes in regions of VP2 that have been reported as antigenically important, suggesting that they may play a role in the neutralizing antibody response. The data presented form an initial basis for BTV serotype identification by sequence analyses and comparison of Seg-2, and for development of molecular diagnostic assays for individual BTV serotypes (by RT-PCR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.