Several drugs currently used in the management of mood disorders, epilepsy (ie, valproic acid), or the control of inflammation (ie, corticosteroids) have been shown to promote visceral obesity in humans by increasing the number of newly formed adipocytes. Valproic acid is classified as a nonspecific histone deacetylase (HDAC) inhibitor, along with trichostatin A and butyric acid. In vitro experiments have demonstrated that such molecules greatly enhance the rate of preadipocyte differentiation, similarly to the effect of corticosteroids. The glucocorticoid receptor stimulates adipogenesis in part by enhancing the transcription of C/ebpa through the titration, and subsequent degradation, of HDAC1 from the C/ebpα promoter. There is, however, controversy in the literature as to the role of HDACs during adipogenesis. In this study, we sought to demonstrate, using 2 different strategies, the definite role of HDAC1 in adipogenesis. By using small interference RNA-mediated knockdown of HDAC1 and by generating an enzymatically inactive HDAC1D181A by site-directed mutagenesis, we were able to show that HDAC1, but not HDAC2, suppresses glucocorticoid receptor-potentiated preadipocyte differentiation by decreasing CCAAT/enhancer-binding protein (C/ebp)α and Pparγ expression levels at the onset of differentiation. Finally, we demonstrate that HDAC1D181A acts as a dominant negative mutant of HDAC1 during adipogenesis by modulating C/EBPβ transcriptional activity on the C/ebpα promoter.
Glucocorticoids promote adipogenesis and contribute to the metabolic syndrome through a number of mechanisms. One of the effectors of glucocorticoid action is the CCAAT/enhancer binding protein β (C/EBPβ). C/EBPβ is a basic leucine-zipper transcription factor involved in diverse processes including differentiation, cellular proliferation, and inflammation. C/EBPβ transcriptional activity is regulated, in part, by its acetylation profile resulting from its dynamic interaction with either acetylases general control nonrepressed protein 5/p300/CBP associated factor (GCN5/PCAF) or deacetylase complexes (mSin3A/histone deacetylase 1 [HDAC1]). Glucocorticoid treatment of preadipocytes promotes C/EBPβ acetylation, leading to mSin3A/HDAC1 dissociation from C/EBPβ and resulting in C/ebpα promoter activation at the onset of adipogenesis, thus increasing the differentiation rate. We recently showed that the regulatory domain 1 (RD1) of C/EBPβ contains four residues (153-156) required for its interaction with HDAC1, therefore supporting RD1 proposed inhibitory role. In an attempt to further elucidate the intrinsic regulatory property of RD1, we sought to characterize the regulatory potential of the N terminus region of RD1 (residues 141-149). In this study, we show that C/EBPβΔ141-149 transcriptional activity was compromised on the C/ebpα, but not on the Pparγ, promoter. Additionally, the ability of C/EBPβΔ141-149 to induce adipogenesis in NIH 3T3 cells was compromised when compared with C/EBPβwt owing to a delayed expression of C/ebpα at the onset of differentiation. Furthermore, the data suggest that the reduced expression of C/ebpα in cells expressing C/EBPβΔ141-149 was due to a persistent recruitment of HDAC1 to the C/ebpα promoter after glucocorticoid treatment. Together, these results suggest that amino acids 141-149 of C/EBPβ act as a positive regulatory domain required for maximum transcriptional activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.